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Intended Learning Objectives %ﬁc

1. Understand the basic principles of phylogeny, including
substitutions models, optimality criteria and branch
support.

2. Understand what is a phylogenetic tree and how to read it.

3. Learn the impacts of recombination on phylogenetic
inference.
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distances, sequences, notion of homology

clustering, MP, ML, Bayesian
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Part 1: The tree



1. A phylogenetic tree @c

A phylogenetic tree, phylogeny or evolutionary tree
IS a graphical representation describing the
evolutionary history between a set of
species/taxa/sequences/etc.

In other words, it is a branching diagram or a tree
showing the evolutionary relationships among
various biological species or other entities based
upon similarities and differences in their physical or
genetic characteristics.

New Wikipedia’s logo by Nohat / CC BY-SA 3.0



https://commons.wikimedia.org/wiki/File:Wikipedia-logo-v2.svg
https://creativecommons.org/licenses/by-sa/3.0/

1. These are phylogenetic trees ecC

Actinobacteria
Atribacteria

Aquificae
Calescamantes
Coldiserica
Dictyoglomi
Thermotagae

Poribacteria
Latescibacteria
BRS

Marinimic

Bacteroidetes
Chiorobi Caldithrix

PVC

Verrucomicrobia

Omaitrophica ®

Aminicentantes. Ro
Acidobacteric @
Tectomicrobia, Modylbacteria
ReStrn: 922,

o
Silfobacterior
Chrysiogenetes

M6 ..
Epsilonproteobacteria

Alphaproteobacteric

etaprotec

Gammaproteobacteria

Chloraflexi

(Tenericutes)

Bacteria

Armatimonadetes Nomurabacteria @ @ Kaiserbacteria

@ Campbellbacteria
Firmicutes

Cyanobacteria
Giovannonibacteria
° ® ol

Wolfebacteria
®crgensenbacteria

‘@ Melainabacteria
o RBX
WOR1

Parcubacteria

@ Yanofskybacteria
@ Moranbacteria
acteria
'® Uhrbacteria i
o faliowbaciers Candidate
Phyla Radiation

ia BD1-5, GN;
bacteria SR

Major lineages with isofated representative: italics
Major lineage lacking isolated representative: ®

Eukaryotes

Diapherotri

archaeota
gmarchaeota
Parvarchaeota

ta
Woesearchaeota
Altiarchaeales  Halobacteria
Z7ME43

TACK
Archaea

Thaumarchaeota

Archaeplastida
Chromalveolata

Amoebozoa

EUROPEAN CENTKE FOR
CASEASE PREVENTION
AND CONTROL

Bovine p . NC_001442

o d (HPyV8), NC_014361
100 Orangutan polyomavirus, NC_013439
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From left to right:

I think by Charles Darwin / Public Domain

Figure 1 by Hug, L., Baker, B., Anantharaman, K. et a/. / CC BY 4.0
Figure 3 by Stevenes, H.. et al. /[ CCBY 2.0

Modified from Figure 4 by Colcombet-Cazenave, B. et al. / CC0 1.0



https://doi.org/10.1038/nmicrobiol.2016.48
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0077884
https://creativecommons.org/licenses/by/2.0/
https://doi.org/10.1186/s12859-021-04116-5
https://creativecommons.org/publicdomain/zero/1.0/
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1. A hierarchical clustering dendrogram is NOT a &

phylogenetic tree ecoc
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A dendrogram plotted with R by Jackverr / CC BY-SA 3.0



https://commons.wikimedia.org/wiki/File:HierarchicalClustering.png
https://creativecommons.org/licenses/by-sa/3.0/

1. A cladogram is NOT a phylogenetic tree
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https://creativecommons.org/licenses/by/4.0/
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1. A Minimum Spanning Tree (MST) is NOT a e

phylogenetic tree ecoc

MLST - Country of isolation

@ Australia [210]
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(© Colombia [10]
@ Denmark [12]
(O Germany [24]
@ Ireland [45]
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@ UK [634]

Cropped from Figure 3 by Whiley D et a/. /| CC BY 4.0



https://doi.org/10.1099/mgen.0.001225
https://creativecommons.org/licenses/by/4.0/

1. Phylogenetic trees come in all shapes and sizes @c
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https://yulab-smu.top/treedata-book/chapter4.html
https://creativecommons.org/licenses/by-nc-sa/4.0/

1. Tree rearrangements @c
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All of these rearrangements show the same evolutionary
relationships between the taxa
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1. Vocabulary

ELNOrEAN CENTE FOR
AND CONTROL

time

Common ancestor of primates
(internal node)

Created with BioRender.com

Nowadays taxa (tips or leaves) ’
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1. Vocabulary
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time

Monophyletic group (clade)

Paraphyletic group (clade) Created with BioRender.com
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1. Rooting a tree @ c

Additional data
needed to root

Created with BioRender.com
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1. Rootmg a tree @ C
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.f' Q ‘ ' outgroup

Additional data
needed to root

Created with BioRender.com
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Created with BioRender.com
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1. No root: no information about ancestry @c
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Created with BioRender.com
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Part 2: The data



2. Molecular clock hypothesis @c

1960s: dissimilarity in protein fingerprints is
approximately proportional to the distance
between species.

feve) :
'
s } f’j 4

Human Chimpanzee

Same principle applied today to molecular Wl . .
Sequences (DNA’ RNA’ prOteinS). AGoriI;:‘ - ‘Orongutun . “Rh.es;.l:ey_

Fia. 2.—Tryptic peptide patterns of primate hemoglobins. The circled spot on the Rhesus
monkey pattern represents phenylalanine added two and a half inches to the anodal side of the
point. of application of the peptide mixture.

E. Zuckerkandl, R.T. Jones, L. Pauling



https://doi.org/10.1073/pnas.46.10.1349
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2. Sequence homology @&
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Phylogenetic tree - evolution of a group of sequences since their common
ancestor.
Sequences need to be homologs! Different types of homology:

« Orthologs: originated from a speciation event.
« Paralogs: originated from a duplication event.
« Xenologs: originated from a lateral gene transfer.

Ancestral %
species {

Speciation Duplication Lateral gene transfer

Current

species
Created with BioRender.com




2. Species tree vs gene tree
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2. Orthology vs paralogy @c
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2. Lateral gene transfer @’ C
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Gene homology by Ayacop / CC0O 1.0



https://commons.wikimedia.org/wiki/File:Gene-homology.svg
https://creativecommons.org/publicdomain/zero/1.0/

2. Gene families can have complex histories @E{Sc
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Part 3: The methods



3. Tree inference methods @

Methods

&k

Data

Distances Characters

UPGMA
Neighbor-joining (NJ)

Clustering

Maximum Parsimony (MP)
Minimum Evolution (ME) Maximum Likelihood (ML)
Bayesian

Optimality
criterion



3. Inferring trees by clustering: UPGMA

Unweighted Pair Group Method with Arithmetic mean ( )
(1950s).

clustering method.

Assumes strict molecular clock.

Gives an exact representation of a distance matrix, but exact
tree/matrix correspondence never happens with real data.

UPGMA and more generally hierarchical clustering methods infer
incorrect trees most of the time.

g5
832
3z
3



3. Inferring trees by clustering: NJ @ C
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Neighbor-joining (NJ) and its descendants (e.g., BioNJ, 1990s) are widely used
NOW.

They infer , hon-molecular-clock trees using an algorithm comparable to
UPGMA.
Branch lengths are interpreted in number of substitutions per site ( ).

Evolutionary distances between sequences are estimated using probabilistic
models accounting for hidden substitutions.

AATGCTT

AAGGCTT



3. Inferring trees by clustering: NJ @ C
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Neighbor-joining (NJ) and its descendants (e.g., BioNJ, 1990s) are widely used
NOW.

They infer , hon-molecular-clock trees using an algorithm comparable to
UPGMA.
Branch lengths are interpreted in number of substitutions per site ( ).

Evolutionary distances between sequences are estimated using probabilistic
models accounting for hidden substitutions.

AATGCTT

AAAGCTT

AAGGCTT



3. Inferring trees by clustering @c

NJ uses a to evaluate at each step the leaf pair to
agglomerate.

A criterion is an objective value allowing to compare a set of
phylogenetic trees.
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3. Optimality criterion: Minimum Evolution (ME) &

For methods (using a distance matrix).

Consider a tree with branch lengths. The length of the tree is simply the sum of its
branch lengths.

According to the ME criterion, the best tree is the
shortest. Data

Fast and accurate distance-based Distances Charaters
tree reconstruction methods have
been implemented using the ME
criterion (FastME).

UPGMA
Neighbor-joining (NJ)

Clustering

Methods

Maximum Parsimony (MP)

Minimum Evolution (ME) Maximum Likelihood (ML)
Bayesian

Optimality
criterion

Also used in NJ.



3. Summary: Distance-based methods eCdc

Distance-based methods are fast.
We need a way to estimate distances.

Correction method (multiple substitutions). Data

Distances Characters

Pairwise distance estimation
is not reliable for large

UPGMA
Neighbor-joining (NJ)

Clustering

(72}
©
divergence times. 2 _
= 5.8 Maximum Parsimony (MP)
= £ O Minimum Evolution (ME) Maximum Likelihood (ML)
g' G Bayesian



3. Multiple sequences alighments @Eéc

ATGTTTGACCCGTTCTAC Wild type Base-pair deletion

mRNA sequence without any mutation Frameshift causing extensive missense

ATGTTGGCGTTCTAC -
ATGTATAACCCGTTTAC o BEHARMEFENEEERE,  ,, EMEANEEANEA -

) ¥ ] ¥ v ¥ ) } v
proein (e (s Y(PHE (O D) (B Protein D @
Base-pair insertion Three-nucleotide insertion/deletion
Frameshift causing immediate nonsense Extra/missing amino acids
Missing codon

Barau A]+]<]
v
o (R ) ) ] 1 e e ] ) ) MMSWMM%WMMM@MNWW

@ * J * * J\ @ J
i () proven (T - QD @D

Created with BioRender.com



3. Multiple sequences alignments

ATGTTTGACCCGTTCTAC
ATGTTGGCGTTCTAC
ATGTATAACCCGTTTAC

ATGTTTGACCCGTTCTAC
ATGTTG---GCGTTCTAC
ATGTAT-AACCCGTTTAC



3. Tree inference procedure

Input: multiple alignment (or distance matrix).

Output:  tree.
Goal: find a tree that explains the input.

g5
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3. Optimality criteria: Maximum Parsimony @éc
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Select the tree that minimizes the number of mutations (or

steps) needed to explain the data. Data

Distances Characters

Character-based approach.

UPGMA
Neighbor-joining (NJ)

Clustering

Methods

Maximum Parsimony (MP)

Minimum Evolution (ME) Maximum Likelihood (ML)
Bayesian

Optimality
criterion



3. Optimality criteria: Maximum Parsimony @&Sc

2T




3. Optimality criteria: Maximum Parsimony &
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3. Optimality criteria: Maximum Parsimony &
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3. Optimality criteria: Maximum Parsimony
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3. Optimality criteria: Maximum Parsimony @E&

~ AAGT
M ATTT
M TTTC
M TTGC

1 31




3. Optimality criteria: Maximum Parsimony @&

2X9
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AAGT TG ...
TTTTG...
TTCCA ...
TGCGA ...
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Select the majority (/e. 1)




3. Optimality criteria: Maximum Parsimony @Eéc

Select the tree that minimizes the number of mutations (or

steps) needed to explain the data.
Data

Character-based approach.

Distances Characters

UPGMA
Neighbor-joining (NJ)

No root, no branch lengths.

Clustering

Methods

Maximum Parsimony (MP)

Minimum Evolution (ME) Maximum Likelihood (ML)
Bayesian

Optimality
criterion
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3. The probabilistic framework @c




3. The probabilistic framework

A or C

A A

This is parsimony.
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3. The probabilistic framework

AC.

AC. AC.r

A A C

0 or more substitutions. 1 or more substitutions.
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3. The probabilistic framework

« Hidden substitutions may occur.

* Nucleotides have

A A C

 We need a that gives the probabilities of
substitution between all possible different characters
during a given amount of time.



3. Optimality criterion: Maximum Likelihood

First proposed by Felsenstein (1981, ML) and
Yang and Rannala (1996, Bayesian).

Character-based approaches, using multiple
alignment.

Standard model:
« Tree with branch lengths

« Substitution model

HKY
A
C
G
T
A C G T

m/
@
L
[3,]
»
@
Fe]
(o))



3. Optimality criterion: Maximum Likelihood @c

In phylogeny:
* The is the sequence alignment.

« The set of parameters representing the are the parameters of the
evolutionary scenario (at the very least, a tree topology, branch lengths,
and the parameters of the substitution model).

« The inferred is the of the model (the
of observing this model given our data).

« Maximum likelihood allows estimating the parameters of a model that
describe the data the best.



3. Optimality criteria: Maximum Likelihood B
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ML and Bayesian methods aim at
maximizing the probability of a model
given the data (likelihood).

ML methods maximize the likelihood and 2y
provide a unique tree. - T,

Bayesian methods incorporate prior
knowledge, maximize the “posteriors”
using dedicated algorithms, and provide a
collection of alternative trees (forest).

Surface plot by Inductiveload / CCO 1.0



https://commons.wikimedia.org/wiki/File:2D_Wavefunction_(2,1)_Surface_Plot.png
https://creativecommons.org/publicdomain/zero/1.0/

3. Models of evolution: DNA

GTR+ G+ 1
GTR model
Gamma distribution (evolutionary rates of the sites may vary)
Proportion of invariant sites (some sites do not vary at all)



3. Models of evolution: protein

LG+ G
LG model
Gamma distribution
Proportion of invariant sites



3. A note on recombination @c

Vertical or clonal evolution occurs via different mechanisms. Point mutations
are the simplest ones.

Mobile genetic elements could influence genome-wide similarity measures
but are not shared by all members of a species and thus easily ignored.

Yet homologous recombination events occur, commonly in naturally
transformable species but sometimes outside of these species. This leads to
genome regions with dramatic levels of sequence divergence which does
not reflect the real evolutionary signal, leading to incorrect trees inference.



3. A note on recombination

Recombination can affect only branch
lengths, but also tree topologies for
extreme cases.

Note that recombination is not likely to
affect statistical support of the
branches.

Detection of regions affected by
recombination might prove useful (e.g.,
Gubbins).

Figure 1 by Stott & Bobay / CC BY 4.0


https://creativecommons.org/licenses/by/4.0/

3. Summary

Recommended methods:

Distance-based (NJ, BioNJ], ME)
(<10%)

Maximum Likelihood (software: IQ-TREE, RAXML-NG)
Bayesian (software: PhyloBayes, MrBayes, BEAST)
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Part 4: Exploring the space of solutions



4. Search the tree space @Eéc
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Taxa | Number of rooted trees
1 1
2 1
3 3
4 15
We cannot estimate a criterion for all O B
possible trees. 7 10,395
8 135,135
Heuristic search: does not guaranteeto 7 | 5,77
find the optimal tree. 15 | 213,458,046,676,875
20 8.200, 794,532,637,891,559,375
30 | 4,9518.10°°
40 1.00985.10°7
50 | 2.75292.107°




4. Tree rearrangement: Nearest-Neighbor Interchange @&

(NNI) ecdc
If we chose a single branch of a l
tree, 2 new trees can be obtained by
swapping two subtrees. ( YL
- fast because the total humber of /K
new trees that can be obtained is small N

Number of NNI for a tree with n taxa:

TN
e
4
2(n—3) =2n—6 %(

by Frangois M / Public domain


https://commons.wikimedia.org/wiki/File:NNI.svg

4. Tree rearrangement : Subtree Prune and Regraft &

5 6
1 \( 9
2 /K 10

3 4 7 8

Using SPR we can obtain many new trees.

|
- better exploration, but costly. Ny ; S
2(n — 3)(2n — 7) new topologies. >X< V
Of note, among all possible SPR moves some |

are NNIs. V

5
)\ |
; 3 by Francois M / Public domain_



https://commons.wikimedia.org/wiki/File:SPR.svg

4. Exploring the tree space @c

one dot = one tree
two neighbor dots are separated by exactly
one tree rearrangement

criterion
worst @ @ @ ® best




4. Exploring the tree space @c

If we obtain this NJ tree, then tree
rearrangements cannot lead to an
improvement...

criterion
worst @ @ @ ® best
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4. Exploring the tree space: hill climbing

.. but generally, we do not obtain the optimal
tree and so rearrangements are useful

® © 6 6 6 6 6 60 60 0 O ® 6 0 ©
® 6 6 6 0 O ® 00;0000
® 6 6 0 © .?0000.
® 6 0 © o O ® 6 6 0 ©
® 6 6 0 © ? l/QOQQQO
® 6 0 © e o ® 06 O
® & 06 © \/00000.
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criterion

worst @ @ @ ® best
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4. Exploring the tree space: hill climbing B
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Created with BioRender.com

A




I
4. Exploring the tree space: hill climbing B
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Created with BioRender.com
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4. Exploring the tree space: hill climbing B
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Using only NNI might result in
getting stuck in a local optimum.

SPR might avoid these local
optima.

Another strategy is to start from a
different tree.

Created with BioRender.com

- e



Part 5: Branch support



5. Bootstrap

The bootstrap is a computer-based
technique for assessing the accuracy
of a almost any statistical estimate.

A phylogenetic tree can be
considered as a statistical estimate.

Joseph Felsenstein introduced the
use of bootstrap in phylogenetic
analyses to assess the confidence of
each clade of the tree.

B. purpurea

B. cestroides
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o4 B. maliformis
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B. densifolia
B. americana

96 — B. uniflora Brazil Eastern Brazil
B. uniflora Brazil X
B. pi SE South
91 . pilosa A 3
B. martiana merlc_a,
B. clandestina Amazon Basin
97| | 74 B. burchellii
B. aff. uniflora Venezuel la

94 B. obovata var. coriacea

100 95

r700

B. boliviana
B. australis
B. pauciflora

228 macrocapa Coastal Pacific,
e Andean
B. imatacana foothills &

B. grandiflora
_E chiricaspi montane forest
B. mire
100— B. plowmaniana Argentina
B. plowmaniana Bolivia
B. guianensis Guiana Shield
B. brasiliensis subsp. macrocalyx
B. hydrangeiformis Eastern Brazil
B. cuneifolia
100 Plowmania nyctaginoides
100 Hunzikeria texana

70

98 |
100 Bouchetia erecta

Nierembergia hippomanica
Leptoglossis darcyana
73 Fabiana imbricata
100 Calibrachoa parviflora
Petunia axillaris

by Filipowicz, N et al. /


https://commons.wikimedia.org/wiki/File:Brunfelsia_phylogenetic_tree.jpg
https://creativecommons.org/licenses/by/4.0/

e
5. Phylogenetic bootstrap

From the alignment, sites are sampled randomly with
replacement.

This is equivalent to assigning random weights to each
sites.

For each new alignment we infer a phylogeny (same
parameters).

A branch found in x% of the bootstrap trees have a
support of x%.

Seql
Seq2
Seq3
Seq4
Seqg5

Seql
Seq2
Seq3
Seq4
Seqg5

Seql
Seq2
Seq3
Seq4
Seqg5

Seql
Seq2
Seq3
Seq4
Seqg5

eCOC
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5. Limitations

g5
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A great number of replicates should be performed (1,000 is
recommended) »>

High bootstrap value (>90%) does not imply a true branch. A tree
made of fully supported branches can be entirely wrong.

—> bootstrap is as relevant as the initial analysis. If the initial

analysis is wrong (e.g., from a set of completely unrelated genes), the
bootstrap confidence values will be meaningless.



5. Limitations
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Bootstrap is highly sensitive.

If a single taxa can be placed elsewhere in the tree without affecting
the optimality criterion (e.g., randomly resolved polytomies) the
bootstrap value will drop.



5. Alternatives: Ultra-fast bootstrap @c

~ast approximation of the bootstrap. Need at least 1,000 replicates to
produce meaningful scores.

Pros: almost costless.

Cons: not as reliable as bootstrap. Still a nice alternative when dealing
with very large trees.

Implemented only in the software IQ-TREE.


https://doi.org/10.1093/molbev/mst024
https://doi.org/10.1093/molbev/msx281

5. Alternatives: Transfer Bootstrap Expectation B

Bootstrap trees must be produced just like for standard bootstrap.
The difference is how support values are computed.

Pros: responds to the sensitivity issue. If an almost identical branch is
found in a bootstrap tree, this will increase the score. As a result, deep
branches can get better scores.

Cons: Still slow because it requires at least 100 bootstrap trees.
Implemented all modern ML softwares.


https://doi.org/10.1038/s41586-018-0043-0

5. Alternatives: approximate likelihood ratio test @
(aLRT)

For each branch of the tree, the likelihood is compared to the
likelihood of the tree obtained via the best possible NNI. From the
difference of these two likelihood scores, a p-value can be derived.

By repeating this for each branch, we obtain a p-value for each branch
of the tree.

Pros: performing a single NNI and updating the likelihood score is very
fast. Suitable for very large trees.

Cons: most reviewers demand bootstraps. aLRT is considered as less
reliable.



Summary



In summary @ C
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The data can be both distances or sequences.

The methods can be clustering methods (UPGMA, NJ) or they can rely
on an optimality criterion (ME, Parsimony, ML, Bayesian).

Distance-based analyses are fast but have limitations.

Character-based analyses are more robust but can be resource- and
time-consuming.
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Further reading @C

INFERRING The ]
PHYLOGENIES Phylogeneti
Handbook

Edited by Philippe Lemey,
Marco Salemi and
Anne-Mieke vandamme

Joseph Felsenstein
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