

 1

Handout: Advanced Python

Table of Contents

Escape characters .. 2

String manipulations ... 2

Tuples .. 3

List manipulations ... 4

Extend ...4

Append ..5

Count ..5

Replace ..5

Remove ...5

User input.. 7

Packages ... 8

Biopython ..8
Seq module ... 8
SeqIO module ... 9
gzip module .. 10

sys module .. 10

 2

Escape characters
Escape characters in Python are special characters preceded by a backslash (\) that are used to
represent characters that are difficult to type directly. Using escape characters allows you to
include special characters in strings and control the formatting of text within your Python code.
Here are some commonly used escape characters in Python:

Escape character Represents

\n Newline

\t Tab

\\ Backslash

\’ Single quote

\” Double quote

Here is a simple example with multiple escape characters:

String manipulations
String manipulation refers to modifying, formatting, searching, and extracting data from strings.
Python offers a variety of built-in methods to perform these tasks efficiently. Some common string
manipulation techniques include:

• Split: Splits a string into a list of substrings based on a delimiter.

• Strip: Removes leading and trailing whitespace characters from a string.

• Join: Joins elements of a list into a single string using a specified separator.

• Upper: Converts all characters in a string to uppercase.

• Lower: Converts all characters in a string to lowercase.

• Replace: Replaces occurrences of a specified substring with another substring.

• Find: Returns the index of the first occurrence of a specified substring within the string.

• Startswith: Checks if the string starts with a specified substring.

• Endswith: Checks if the string ends with a specified substring.

The sections below will focus on the manipulations needed for today’s exercises.

Split
split() breaks a string into a list of substrings based on a specified separator. By default, the
separator is whitespace characters (spaces, tabs, newline characters), but you can specify any
character or string as the separator. Here is a simple example:

print string with multiple escape characters python
print('Hi!\nAllright, you don\'t have to ignore me…')
output Hi!
 Alright, you don't have to ignore me…'

 3

You can also specify a custom separator within the split() method:

Strip
strip() removes leading and trailing whitespace characters from a string. It does not modify the
original string but returns a new string with the whitespace characters removed:

Removing whitespace is the default behavior, you can also remove other characters, however,
only characters that are leading or trailing. Here is an example:

Tuples
A tuple is an immutable sequence, meaning its elements cannot be changed after creation. Tuples
are ordered collections that can hold different data types and are enclosed in parentheses (). Key
Features of Tuples:

• Immutable – Elements cannot be added, removed, or modified.

• Ordered – Maintains the order of elements.

• Allows duplicates – Unlike sets, tuples can store repeated values.

• Indexable – Access elements using indexing, just like lists.

• Efficient – Faster than lists for fixed data storage.

split string into list at every whitespace python
message = 'I am so sorry. I ate your homework'
print(message.split())
output ['I', 'am' 'so', 'sorry.', 'I', 'ate', 'your', 'homework']

split string into list at every ‘o’ python
message = 'I am so sorry. I ate your homework'
print(message.split('o'))
output ['I am s', ' s', 'rry. I ate y', 'ur h', 'mew', 'rk']

strip string from leading and trailing whitespace python
rudecomment = ' Sorry I wasn\'t listening… '
print(rudecomment.strip())
output 'Sorry I wasn't listening…'

strip string from leading and trailing whitespace python
influencerspeak = '#blessed #sunshine #morningcoffee'
print(influencerspeak.strip())
output 'blessed #sunshine #morningcoffee'

 4

While you cannot modify items in a tuple, you can modify internal lists. Here is an example:

List manipulations
List manipulation commands in Python enable the modification, manipulation, and access of list
elements. These commands offer flexibility in managing and manipulating list data structures.
Some common list manipulation commands include:

• extend: Appends elements from another list to the end of the current list.

• append: Adds an element to the end of the list.

• insert: Inserts an element at a specified position in the list.

• remove: Removes the first occurrence of a specified element from the list.

• pop: Removes and returns the element at a specified index in the list.

• index: Returns the index of the first occurrence of a specified element in the list.

• count: Returns the number of occurrences of a specified element in the list.

• sort: Sorts the elements of the list in ascending or descending order.

• reverse: Reverses the order of elements in the list.

• slice: Extracts a portion of the list based on specified indices.

• len: Returns the number of elements in the list.

Extend
Combining lists involves merging the elements of one list with another to create a single, larger
list. There are several ways to combine lists in Python, one of which is the extend() method:

Create a tuple containing three strings python
healthy_dinner = ("pizza", ["chicken burger", "beef burger"], "Shawarma")

Modify internal list in tuple
healthy_dinner[1][1] = "cheese burger"
print(healthy_dinner):
output('pizza', ['chicken burger', 'cheese burger'], 'Shawarma')

Create two lists of strings python
cakes = ['cheesecake', 'fishcake']
fruits = ['cherry', "plum", 'eggplant']

Combine the lists by using the + operator
desserts = cakes + fruits
print(desserts)
output ['cheesecake', 'fishcake', 'cherry', 'plum', 'eggplant']

Combine the lists by using the extend command
desserts = cakes.extend(fruits)
print(desserts)
output ['cheesecake', 'fishcake', 'cherry', 'plum', 'eggplant']

 5

Append
append() is used to add an element to the end of a list. This method is particularly useful when
you want to dynamically add elements to a list without having to specify the index where the
element should be inserted. Here is a simple example:

Count
count() is used to count the number of occurrences of a specified element in a list. When called
on a list, count() takes a single argument, which is the element to be counted. It returns the
number of times that element appears in the list. Here is a simple example:

Replace
Lists don't have a built-in replace() method, however, you can achieve a similar result by using
indexing to replace elements within a list. Here is a simple example:

Remove
remove() deletes the first occurrence of a specified value from a list. It takes a single argument,
which is the value to be removed from the list.

Append string to end of desserts list python
desserts.append('tomato')
print(desserts)
output ['cheesecake', 'fishcake', 'cherry', 'plum', 'eggplant', 'tomato']

Make list called stuffIAteToday python
stuffIAteToday = ['chocolate', 'bananas', 'chocolate', 'tomato soup']

Count and print the amount of times chocolate is in list
print(stuffIAteToday.count('chocolate'))
output 2

Replace string at index 1 with cookie python
desserts[1] = 'cookie'
print(desserts)
output ['cheesecake', 'cookie', 'cherry', 'plum', 'eggplant', 'tomato']

Make list called stuffIAteToday python
stuffIAteToday = ['chocolate', 'bananas', 'chocolate', 'tomato soup']

Remove first occurance of chocolate
print(stuffIAteToday.remove('chocolate'))
output ['bananas', 'chocolate', 'tomato soup']

 6

Alternatively, the pop() method removes and returns the element at a specified index from a list.
This method takes an optional argument, which is the index of the element to be removed:

Sort
sort() is used to sort the elements of a list in ascending order by default. It modifies the original
list in place and does not return a new list. This method can also take optional arguments such as
reverse=True to sort the list in descending order:

Make list called stuffIAteToday python
stuffIAteToday = ['chocolate', 'bananas', 'chocolate', 'tomato soup']

Remove first occurance of chocolate
stuffIAteToday.pop(2)
output chocolate

Make two lists comprised of numbers and strings python
stuffIAteToday = ['chocolate', 'bananas', 'chocolate', 'tomato soup']
listOfNumbers = [4,7,2,6,1]

Sort stuffIAteToday alphabetically
stuffIAteToday.sort()
print(stuffIAteToday)
output ['bananas', 'chocolate', 'chocolate', 'tomato soup']

Sort listOfNumbers ascending
listOfNumbers.sort()
print(listOfNumbers)
output [1,2,4,6,7]

Sort listOfNumbers descending
listOfNumbers.sort(reverse = True)
print(listOfNumbers)
output [7,6,4,2,1]

 7

User input
User input refers to the mechanism through which a Python program can accept data or
information from the user during runtime. The input() function is used to prompt the user to
enter data, which can then be stored in variables or processed by the program. Here is a simple
example:

In this example, the input() function prompts the user to enter their name. The text "Enter your
name: " serves as the prompt. Once the user enters their name and presses Enter, the input is
stored in the variable name. The program then prints a greeting message using the entered name.

It's important to note that the input() function always returns a string, even if the user enters a
number or another type of data. If you need to convert the input to a different data type, such as
an integer or a float, you can use type conversion functions like int() or float(). Here is a simple
example:

User input is a powerful feature that allows Python programs to interact with users dynamically,
making programs more interactive and versatile. However, it's important to handle user input
carefully to avoid errors or security vulnerabilities, such as input validation and sanitization.

prompt user to enter name and print in sentence python
name = input("Enter your name: ")
print("Hello, " + name + "!")

input: Leo
output Hello, Leo!

prompt user to enter name and print in sentence python
age = input("Enter your age: ")
age = int(age) # Convert the input to an integer
next_age = age + 1
print("Next year, you will be", next_age, "years old."

Input: 44
Output Next year, you will be 45 years old.

 8

Packages
A module is a collection of pre-written code that you can import and use instead of writing
everything from scratch. Packages are libraries of multiple modules designed for specific tasks,
making programming more efficient.

To use a module, you first need to have the package installed in your environment. Once installed,
you can import the module and use its functions. Since we have already installed the Biopython
package, you just need to activate the correct Conda environment to access it:

conda activate BTG_biopython

To use the code from a module, you need to import it at the top of your script so that the rest
of your script can access it. You can import an entire package or specific modules within a package
using the following syntax:

If you are running your script in Spyder, you may need to update the Python path to ensure
Spyder can locate installed packages. Go to Preferences → Python Interpreter → Select "Use the
following Python interpreter" and browse to the correct environment (e.g., from Conda). Restart
Spyder for the changes to take effect.

Biopython
Biopython is a comprehensive Python library built for computational biology and bioinformatics.
It provides powerful tools for analyzing and processing biological data, including:

• DNA, RNA, and protein sequences

• Sequence alignments

• Structural biology (protein structures, molecular modeling)

• Parsing bioinformatics file formats (FASTA, GenBank, etc.)

• Phylogenetics and evolutionary analysis

Seq module
The Seq module in Biopython provides functionality for working with biological sequences, such
as DNA, RNA, and proteins. It is a part of Biopython's Bio package and some key features of the
Seq module include:

• Creation of Sequence Objects: The Seq class allows you to create sequence objects by
providing a string representing the sequence of interest. These sequences can include
nucleotide (DNA and RNA) or amino acid sequences.

import module #import entire modules python
from module import object #import specific objects from modules
import package as alias #assign aliases to imported packages

 9

• Sequence Manipulation: The module provides methods for manipulating sequences, such
as reverse complementation, translation, transcription, back translation, and finding open
reading frames (ORFs).

SeqIO module
The SeqIO module in Biopython provides tools for reading and writing biological sequence files
in various formats. It is part of Biopython’s Bio package and simplifies the parsing and formatting
of sequence data commonly used in bioinformatics. Key features of SeqIO:

• File Format Support – Reads and writes sequence data in multiple formats, including fasta,

genbank, fastq, swiss-prot, and more.

• Parsing Sequences – Converts sequence data into Biopython's SeqRecord objects, which

store biological sequences along with metadata (e.g., ID, description).

In the demonstration below, we will use the FASTA file "overpriced_garden.fasta" as an example:

>Seq1_Orchid [organism=Phalaenopsis equestris var. leucaspis]

CCTATACCTAATTTTCGGCGCATGAGCCGGAATGGTGGGTACCGCTCTAAGCCTCCTCATTCGAGCAGAA

CTAGGCCAACCCGGAGCCCTTCTGGGAGACGACCAAGTCTACAACGTGGTTGTCACGGCCCATGCCTTCG

>Seq2_Petunia [organism=Petunia integrifolia subsp. inflata]

TAGTTGGAACAGCCCTCAGCCTACTCATCCGAGCAGAACTAGGCCAACCCGGAACCCTCCTGGGAGATGA

CCAAATCTACAATGTAATCGTCACTGCCCATGCCTTCGTAATAATCTTCTTCATAGTAATACCAGTCATA

import module python
from Bio.Seq import Seq

define sequence
GFP_truncate = Seq("ATGAGTAAAGGAGAA")

print("Sequence: ", GFP_truncate)
print("Complement: ", GFP_truncate.complement())
print("Reverse complement: ", GFP_truncate.reverse_complement())
print("Transcribed to RNA: ", GFP_truncate.transcribe())
print("Translated to amico acids: ", GFP_truncate.translate())

output: Sequence: ATGAGTAAAGGAGAA

Complement: TACTCATTTCCTCTT
Reverse complement: TTCTCCTTTACTCAT
Transcribed to RNA: AUGAGUAAAGGAGAA
Translated into amico acids: MSKGE

 10

Note: One of the more useful functions of Biopython is id(). Use it to get the ID of the sequence.
Note: When using the built-in open() function, the 'with' statement ensures the file is

automatically closed after reading

gzip module
 The gzip module enables compression and decompression of gzip-compressed files, commonly
used to reduce file size. It requires two inputs: the file name and the mode. In this course, we use
"rt" mode only ("r" for reading and "t" for text mode). Here is an example:

sys module
The sys module provides access to system-specific parameters and functions and is part of the
Python Standard Library. It is commonly used for system interaction, command-line arguments,
and environment variables.

import module python
from Bio import SeqIO

open and print ID’s from fasta
for record in SeqIO.parse("path/to/overpriced_garden.fasta", "fasta"):
 print(record.id)

output: Seq1_Orchid

Seq2_Petunia

import module python
from Bio import SeqIO

open and print ID’s from fasta
with open("path/to/overpriced_garden.fasta") as handle:
 for record in SeqIO.parse(handle, "fasta"):
 print(record.id))

output: Seq1_Orchid

Seq2_Petunia

import module python
from Bio import SeqIO
import gzip

define path to compressed fasta file
plants = "path/to/overpriced_garden.fasta.qz"

open and print ID’s from fasta
with gzip.open(plants, "rt") as handle:
 for record in SeqIO.parse(handle, "fasta"):
 print(record.id)

output: Seq1_Orchid

Seq2_Petunia

 11

In this course, we will use sys.argv to pass command-line arguments to Python scripts. Like gzip,
you don’t need to specify its source—simply import the module to use it.

Running the following script in the terminal:

Would have the following output:

import module python
import sys

pain = str(sys.argv[1])
print("Hello cruel world!")
print("Today’s pain measure is " + pain + ".")

./hello_cruel_world.py 9000 unix
output: Hello cruel world!

Today’s pain measure is 9000.

	Escape characters
	String manipulations
	Tuples
	List manipulations
	Extend
	Append
	Count
	Replace
	Remove

	User input
	Packages
	Biopython
	Seq module
	SeqIO module
	gzip module

	sys module

