
Pipeline development

⛔ This exercise assumes the following:
 * A native Linux environment / terminal
 * A functional micromamba installation
 * A few bacterial assemblies
 * All files are stored within the
gebt user files. Feel free to change locations according to own needs!

Authors
These exercises where authored and tested by Povilas Matusevicius and Kasper Thystrup Karstensen

Our very first pipeline
A brief disclaimer
Scripting and pipelines is a bit like cooking. You set one or more recipes (scripts), which the chef (bash) then
follows. The ingredients (files and file paths) are usually listed at the top, and then the cooking utensils
(commands and software-calls) are introduced later once you need these.
Now contrary to cooking,
scripts are interpreted literally down to the very last comma, so the chef will not use His/Her experience to guide
the process. This means that any errors in the recipe will be followed and missing steps will be let out.
E.g. If the chef is supposed to put the turkey in the oven and crank the temperature up to a 200 Celsius for 20
minutes, this will neither ensure that the turkey will be taken out of the oven, nor that the oven will be turned off,
unless it is stated in the recipe.

This can (and will) lead to a lot of frustration, as its hard to ensure that all details are correct.

❗ This is quite alright. In fact, its impossible to learn coding without a lot of trials and errors!!

Pipelines starts with a script…
In order to make a pipeline we must provide at least one script, which can be followed, thus in this first exercise
you will be guided through the process of generating a bash script.

The bash script is a simple text file which contains one or more lines of code, which will be executed in
chronological order.

A very important aspect of making bash script is to ensure that the code is clean and concise for the future reader
and developer. Which assuming long job contracts, very often could be yourself. One way of helping yourself
making the code more reader friendly is to assign variables for containing file paths and files.

Setting up a characterization pipeline
Let’s make a script which utilizes some of the characterization tools which were introduced during previous days.

To demonstrate we will start out setting up ResFinder, and AMRFinderPlus

Prerequisites
For this exercise we will use following files and file paths.

Sample: /home/gebt/BTG/Precomputed_Data/RawAssembliesSpades/careful_mode/Ec001.fasta

Path for output folder: /home/gebt/BTG/Day8_pipelines/output

Path to ResFinder database: /home/gebt/BTG/Day8_pipelines/dbs/resfinder_db

Executing commands from different environments

Pipeline development 1

A drawback of using conda/mamba environments, is that not all software can run in the same environments.
When running bash scripts, the shell doesn’t always know how to invoke the conda/mamba commands. With
mamba though, there is a hack that can be utilized: Mamba allow for cherry picking commands from different

environments with using micromamba run . This way environments are not required to be loaded. So in order to run
e.g. AMRFinderPlus from within any (or no) environment, the following command can be used in the bash script.

micromamba run -n BTG_resistance amrfinder

Tasks: Variables
First, we will make variables which can make writing and interpreting the script easier.

1. Make a new folder in the BTG directory, call it Day8_pipelines . The full path to the folder should be
/home/gebt/BTG/Day8_pipelines .

2. Navigate into the folder using cd .

3. Make a new file called finders_pipeline.sh within the folder, e.g. using nano finders_pipeline.sh

4. Copy and paste the code chunk below, and then fill out the missing information for the rfdb_path :

#!/bin/bash

Define locations for input and output
sample="/home/gebt/BTG/Precomputed_Data/RawAssembliesSpades/careful_mode/Ec001.fasta"
rfdb_path=""
output_folder="/home/gebt/BTG/Day8_pipelines/output"

Task: Execution
The very first line of this script is called a shebang, and it’s comparable to file extensions in Windows. In
Windows. If you take a word document and rename its file extension form .docx to .exe , Windows will assume that
it’s a program that it will try to run once you double click it. However, it will fail, as it’s in fact a document file and
not a program.

In Linux, the shebang works by telling the shell which program is required to run the script, if no shebang line is
added, you would have to tell the shell which program is used to execute the script, which could be helpful for
non-programming users.

By using a shebang, scripts are easy to execute, you just have to point to the file with a preceding dot and forward
slash (./)

1. Can you name the program which is used to execute this script?

2. Try to execute the script using ./finders_pipeline.sh . Did any errors show up?

Right now the files permission is to read and write. However, as a safety mechanism in Linux files can’t be
executed unless you change their permissions to do so.

3. Allow execution of the file by running chmod u+x finders_pipeline.sh

a. Explanation: u means for current user only, + means add permissions, x means execution permission.

4. Try to execute the script again. Did any errors show up this time?

Task: Telling the chef what to do…
Now where the ingredients list have been set up, lets start making the script usable.

Currently, we are pointing to a output file path which does not exist, like telling the chef to drop the dishes on an
imaginary table, not very helpful!

A great start is then to ensure that the folder is created early on.

1. In the finders_pipeline.sh file, directly after the variables section, add the following lines:

Create output folders
rf_out=$output_folder/rf
af_out=$output_folder/af

Pipeline development 2

mkdir -p $rf_out
mkdir -p $af_out

♟️ A word about the quoted variables. Quotes on “$variables” are not required but recommended. Say that
we have a $output variable which points to the file …/SRR27240825.fa. If you wrote $output_results.txt the
script would look for a $output_results variable instead of $output . In order to prevent this behavior just add
quotes: "$output"_results.txt

Now, its time to add some lines of code which executes some of the programs which we want to use for
characterization, lets start with ResFinder.

2. Add the following lines to your script.

Start characterization with resfinder
micromamba run -n BTG_resistance run_resfinder.py -ifa $sample -db_res $rfdb_path -o $rf_out -acq

3. Time to execute the script and see if things work. Save changes, and in another terminal run the script.

/home/gebt/BTG/Day8_pipelines/finders_pipeline.sh

💡 Did you make sure to fill out the database paths for ResFinder?

Running AMRFinderPlus
By now we are well on our way of setting up a small pipeline for characterizing isolates. We are not satisfied by
only using ResFinder, so lets try to use AMRFinderPlus as well.

By calling the AMRFinder help page, we can inspect its usage. Here we have only included details for the two
arguments we need:

❓ USAGE: amrfinder [--protein PROT_FASTA] [--nucleotide NUC_FASTA] [--gff GFF_FILE] [--database
DATABASE_DIR] [--update] [--ident_min MIN_IDENT] [--coverage_min MIN_COV] [--organism
ORGANISM] [--translation_table TRANSLATION_TABLE] [--plus] [--report_common] [--point_mut_all
POINT_MUT_ALL_FILE] [--blast_bin BLAST_DIR] [--parm PARM] [--output OUTPUT_FILE] [--quiet] [--
gpipe] [--threads THREADS] [--debug]

 -n NUC_FASTA, --nucleotide NUC_FASTA | Nucleotide FASTA file to search
 -o OUTPUT_FILE, --output OUTPUT_FILE | Write output to OUTPUT_FILE instead of STDOUT

1. Add the following AMRfinder call to the finders_pipeline.sh below

micromamba run -n BTG_resistance amrfinder -n $sample -o $af_out/amrfinder_results.txt

2. Ready to take the pipeline for a spin? Save and exit nano, then… Let’s GO

Run this from terminal
/home/gebt/BTG/Day8_pipelines/finders_pipeline.sh

Solution - Please minimize until you are done!
#!/bin/bash

Define locations for input and output
sample="/home/gebt/BTG/Precomputed_Data/RawAssembliesSpades/careful_mode/Ec001.fasta"

Pipeline development 3

rfdb_path="/home/gebt/BTG/Day8_pipelines/dbs/resfinder_db"
output_folder="/home/gebt/BTG/Day8_pipelines/output"

Create output folders
rf_out=$output_folder/rf
af_out=$output_folder/af
mkdir -p $rf_out
mkdir -p $af_out

Start characterization with finders
micromamba run -n BTG_resistance run_resfinder.py -ifa $sample -db_res $rfdb_path -o $rf_out -acq
micromamba run -n BTG_resistance amrfinder -n $sample -o $af_out/amrfinder_results.txt

Wrap up
Congratulations, you have made your very first pipeline. Provided you didn’t introduce any errors, it should run the
same way each time you execute the script. This is really useful for reproducibility and to semi-automate your
own workflow.

Now the script is not very useful if you have samples other than Ec001.fasta, as you would have to change the
sample variable in the script every time you wanted to run it on a different sample. Don’t worry, there are very small

changes required to achieve this, we will take a look at this next.

Making the pipeline run on other samples
Positional arguments
One way to make the pipeline easily usable one can replace the required input with positional arguments.
Positional arguments is a way to make a script look at the extra arguments written by the user, when invoking the
script.

Imagine we have a small executable bash script called simple.sh , it works like this:

#!/bin/bash

firstVar=$1
secondVar=$2

echo "The first variable is $firstVar. The second variable is $secondVar."

When you execute it:

./simple.sh Fish ImSecond
The first variable is Fish. The second variable is ImSecond.

1. Copy the finders_pipeline.sh script into a new file called finders_positional_pipe.sh using:

cp finders_pipeline.sh finders_positional_pipe.sh

2. Open the new file (finders_positional_pipe.sh) e.g. with nano.

2. Change the variable definitions so that sample= takes the first positional argument ($1) and the output_folder=
takes the second positional argument ($2)

3. Save changes

4. In a new terminal execute the script providing the following file (a new file!) and file path, as first and second
arguments respectively.

a. Sample: /home/gebt/BTG/Precomputed_Data/RawAssembliesSpades/careful_mode/Ec001.fasta

b. Output_folder: /home/gebt/BTG/Day8_pipelines/output

Pipeline development 4

/home/gebt/BTG/Day8_pipelines/finders_positional_pipe.sh [sample] [output-folder]

Screening folder for samples
Another approach to enhance usability of your pipeline is to replace the input sample file with a sample folder,
and then automatically screen this folder for relevant sample files.

Screening a folder for fasta files can be a bit out of the scope of this course, so we will provide the code
necessary.

1. First copy the finders_positional_pipe.sh script into a new file called finders_on_folder.sh using cp

2. Open the new file (finders_on_folder.sh) e.g. with nano

3. Rename the sample variable to sample_dir . Remember to leave the remaining $sample variables in the remainder of
the script.

4. Add the following lines to the script right after the variables and mkdir commands:

Screen the sample_dir for fasta files
files=$(find "$sample_dir" -maxdepth 1 -type f -name "*.fasta" | sort)

Explanation

-maxdepth 1 | parameter limits the search to exclude sub folders.

-type f | limits search to only files and not the folders

-name | defines name of the file or folder that has to be find

sort | A command which sorts all the output, in this instance from the find command

Solution - Inspect after finishing step 4!

#!/bin/bash

Assign values to the variables
sample_dir=$1
rfdb_path="/home/gebt/BTG/Day8_pipelines/dbs/resfinder_db"
output_folder=$2

Create output folders
mkdir -p "$output_folder"/rf
mkdir -p "$output_folder"/af

Screen the sample_dir for fasta files
files=$(find "$sample_dir" -maxdepth 1 -type f -name "*.fasta" | sort)

Start characterization with finders
micromamba run -n BTG_resistance run_resfinder.py -ifa $sample --acquired -db_res $rfdb_path -o "$output
micromamba run -n BTG_resistance amrfinder -n $sample -o "$output_folder"/af/amrfinder_results.txt

5. The script does not yet work as the $sample variable is no longer defined, so lets comment out the lines which
does not work. Add a # in front of all the finder commands so they will be ignored:

Start characterization with finders
#micromamba run -n BTG_resistance run_resfinder.py -ifa $sample --acquired -db_res $rfdb_path -o "$output_f
#micromamba run -n BTG_resistance amrfinder -n $sample -o "$output_folder"/af/amrfinder_results.txt

6. Now its time to figure out whether the fasta file screener works or not. Add the following lines directly after the
screening lines (files=$(find …)

Pipeline development 5

Looping over each of the sample files individually
for sample in $files; do
 # Define the sample name from the file
 sample_name=$(basename "$sample" .fasta)

 # Print out helpfull message that this in fact works
 echo The sample $sample_name is located here: $sample
done

7. Save and exit nano, then execute the script by invoking:

/home/gebt/BTG/Day8_pipelines/finders_on_folder.sh /home/gebt/BTG/Precomputed_Data/RawAssembliesSpade

If things goes well, the script should print the file name for every single sample file located within the sample_dir .
The second argument is provided to satisfy the output_folder variable which expects a second argument.

8. Reopen the script in, remove the # signs in front of the resfinder and amrfinder commands, and move the
finder commands into the for loop. Remove the echo $sample line with the finder lines.

In its current state the script should automatically run the finders for each of the samples, however as the final
output files have the same names, these will be overwritten. To prevent this, we must split these results into
individual unique folders. Luckily, this was thought of in the for loop by defining the sample_name variable.

9. For each of the finder lines change the output arguments from the following:

-o "$output_folder"/Xf
to this:

-o “$output_folder”/Xf/"$sample_name"

Where
Xf is denotes rf for ResFinder, and af for AMRFinder

10. There is one more issue, finders don’t create folder themselves, so it would give you an error. Lets tweak the
output folder generation command chunk and then move them into the for loop. The commands should look
like this

mkdir -p $rf_out/$sample_name for ResFinder

mkdir -p $af_out/$sample_name for AMRFinderPlus

11. Add a final victory message at the bottom of the file using echo e.g. echo Jobs done!

Solution - Final script

#!/bin/bash

Define locations for input and output
sample_dir=$1
rfdb_path="/home/gebt/BTG/Day8_pipelines/dbs/resfinder_db"
output_folder=$2

Screen the sample_dir for fasta files
files=$(find "$sample_dir" -maxdepth 1 -type f -name "*.fasta" | sort)

Looping over each of the sample files individually
for sample in $files; do
 # Define the sample name from the file
 sample_name=$(basename "$sample" .fasta)

 # Create output folders
 rf_out=$output_folder/rf/$sample_name
 af_out=$output_folder/af/$sample_name
 mkdir -p $rf_out

Pipeline development 6

 mkdir -p $af_out

 # Start characterization with finders
 micromamba run -n BTG_resistance run_resfinder.py -ifa $sample -db_res $rfdb_path -o $rf_out
 micromamba run -n BTG_resistance amrfinder -n $sample --database $afdb_path -o $af_out/amrfinder_resu

done

echo Jobs done!

Congratulations on your first pipeline!!!

Pipeline development 7

