
🧑‍🍳
How to bake a workflow
Goal
The goal of this guide is to take you through the process of structuring and populating a very basic workflow.
Work your way through this recipe step by step and end up with a workflow which takes raw read data as input,
creates quality assurance reports alongside trimmed reads, as well as generates de-novo assemblies from isolate
read data.

The recipe assumes some prior knowledge of executing bash commands, making very simple scripts, positional
arguments as script input, and finally utilizing virtual Conda environments to install and execute bioinformatic
tools. In the end though, you will get a hang of how you can start your very own basic bioinformatic workflow.

The first steps
The natural first step of building workflows is to execute and test bioinformatic commands. Successful commands
can be stored in simple bash scripts to build your desired workflow step by step.

Part 1 - Creating and testing scripts
Scripts are basically simple text files which when executed can be interpreted as simple bash commands.

Exercise 1

Generate a simple script that will generate a FastQC report for any sample, by copy pasting the following into
a text editor.

#!/bin/bash

Input
read1=~/BTG/SequenceData/Ec005...
read2=~/BTG/SequenceData/Ec005...

Output
outdir="~/BTG/test_workflow/FastQC"

mkdir -p $outdir
micromamba run -n BTG_QC fastqc $read1 $read2 -o $outdir

Replace the paths in the read1 and read2 variables, so they point to the read mates of an actual sample. Note
the output will be written to a new folder (called test_workflow/)

Save the script as FastQC.sh in the ~/BTG/workflow/modules/ folder

Then, execute the script from bash.

cd ~/BTG/workflow
bash ~/BTG/workflow/modules/FastQC.sh

Part 2 - Making scripts dynamic
Currently, we have created a script that is very good at making QC reports for ONE specific sample. This is not
very useful or practical unless you plan on renaming all future samples to the same position and name. One way
to circumvent this is to replace inputs and outputs with positional arguments. Lets generate a script that takes in
input and output from positional arguments for performing read trimming with fastp.

Exercise 2

Copy paste the following into a empty text document called ~/BTG/workflow/modules/fastp.sh

How to bake a workflow 1

#!/bin/bash

Input
read1=$1
read2=$2
sample=$3

Params (Decide by yourself)
avg_qual=20
trim_front=9

Output
outdir=$4/fastp

mkdir -p $outdir
micromamba run -n BTG_QC fastp --in1 $read1 --out1 $outdir/"$sample"_trim_R1.fastq.gz --in2 $read2 --out2

Execute the bash and make sure to provide the required positional arguments to ensure that the execution
works. Use below as example

bash ~/BTG/workflow/modules/fastp.sh /path/to/read1.fastq.gz /path/to/read2.fastq.gz sample_name ~/BTG/test_workflow/fastp/

Solution

bash ~/BTG/workflow/modules/fastp.sh ~/BTG/SequenceData/Ec005...R1.fastq.gz ~/BTG/SequenceData/

Exercise 3

Having learned how to use positional arguments, revisit FastQC script and convert the variables to take
positional arguments instead of hardcoded file paths ($1 , $2 , and $3)

Do a quick test run of the FastQC script.

Part 3 - Mastering environments
Currently we have two scripts for doing quality assurance, however, these steps currently only work on your local
laptop (our course computers). So, in order to ensure that everything is easily deployable on other machines, we
will create installation instructions for these steps and store these in simple text (.yaml) files.

Exercise 4

Make a envs/ folder inside ~/BTG/workflow/ .

Create an empty text file called QC.yaml inside the envs/ folder. Henceforth all files placed there are referred as
environment files.

Fill out the QC.yaml file with the following

name:
 - QC
channels:
 - conda-forge
 - bioconda
dependencies:
 - fastqc
 - fastp
 - multiqc
 - quast

Now you are ready to install and test whether the environment works as intended. We will create an envrionemnt
named the same as the environment file (QC), yet FIRST we have to make sure that there is no enviornment with
that name.

Use micromamba env list

How to bake a workflow 2

If there already is an environment named QC, use micromamba env remove -n QC to remove it.

Use micromamba create -f /BTG/workflow/envs/QC.yaml to create the environment.

You would have to run these installation commands on your own machine to deploy the workflow.

Exercise 5

Again, its time to update the existing scripts to use the current environment, rather than the previous BTG_QC
enviornment

Revisit both the fastqc.sh and fastp.sh modules and replace the -n BTG_QC with -n QC inside the micromamba run
commands.

Part 4 - Generating a workflow
Currently we only have two scripts, henceforth refered as Modules. In order to use these, you would have to call
each of them through bash commands, yet as the workflow expands with more scripts, this task becomes
increasingly daunting. Therefore, lets optimise the workflow to only require a single command to run. This is done
by collecting all positional arguments alongside bash calls of each module, into a single collective bash script
called workflow.sh . (Yes we are very creative with names!)

Exercise 6

Make a empty text file inside the ~/BTG/workflow/ folder called workflow.sh .

Insert the following into the file (Please note for simplicity, we skip the parameters for now)

#!/bin/bash

Input
read1=$1
read2=$2
sample=$3

Output
outdir=$4

Now we are set up to implement the modules by calling them inside the script.

In the workflow.sh script add a line which calls bash modules/FastQC.sh $read1 $read2 $outdir (Note the relative path here!)

Add another line with fastp - !Note fastp takes the sample name as the third positional ($3) argument

After this exercise, your setup should now look like

workflow/
 workflow.sh
 envs/ # Environment files which micromamba can use to install the required software
 QC.yaml
 modules/ # Bioinformatic commands stored in simple individual scripts
 FastQC.sh
 fastp.sh

We are not ready to test the workflow yet. Whenever WE run micromamba in the terminal, the bash are told that
micromamba is actually a shortcut for a executable file.

If we were to run the workflow.sh script, WE will not tell the terminal to call micromamba the script does, and
therefore the workflow would fail. We have to state what micromamba means.

Exercise 7

In the terminal, execute which micromamba

Copy the full direct path for micromamba

How to bake a workflow 3

It Should look something along the lines of /home/gebt/.local/bin/micromamba . This is actually micromambas
executable file, meaning that every time you execute the command micromamba , you actually execute
this file!

Open each of the scripts inside the modules/ folder and then replace micromamba with the direct path to
micromamba. MAKE SURE to replace /home/gebt/ with ~/ , to make the workflow deployable across all other
Unix machines.

Execute the workflow again with empty parameters

Part 5 - Expanding your workflow
NOW, we actually have the concepts to generate and expand workflows, and make them semi-selfconatining. This
would be a great time to practise expanding the functionality of the workflow. Therefore, lets make add a module
for generating de-novo assemblies from the trimmed read data.

Exercise 8

Create an envrionment file (in the envs/ folder) called Assembly.yaml .

Name the environment Assembly .

Add conda-forge as channel, also both assemblers are available on the bioconda channel

List spades under dependencies

💡 Remember if you are stuck, look to Part 3 for inspiration on how to build the environment file!

Solution
Assembly.yaml

name:
 - Assembly
channels:
 - conda-forge
 - bioconda
depedencies:
 - spades

Create the environment and inspect the help page of SPAdes

Solution

micromamba create -f ~/BTG/workflow/envs/Assembly.yaml
micromamba run -n Assembly spades.py --help

Create a new module under the modules/ folder called SPAdes.sh

Add the following to the SPAdes.sh file

#!/bin/bash

Input
read1=$1
read2=$2
sample=$3

Output
outdir=$4/$sample/SPAdes

mkdir -p $outdir

Copy paste the executable path to micromamba and attach run -n Assembly spades.py

How to bake a workflow 4

Add $read1 and $read2 as input for the -1 and -2 options for spades.

Add $outdir as input for the -o option.

Make sure to add the --isolate to determine the assembly mode.

Execute the module from the terminal to ensure that it works

Add a line at the end of the workflow.sh where the asembly module are called with bash and attach the relevant
variables (remember to use the trimmed reads from the fastp module as input for the assembly.

Part 6 - Making the workflow more user friendly
Currently, each module takes in unnamed positional arguments for determining Input and Output. In order to make
the workflow more usefull for others, it would be a great idea to define named arguments and add a software
description.

Exercise 9

Lets start with the description

Add the following just into the workflow.sh script after the !#/bin/bash line

Define usage function
usage() {
 echo "Usage: $(basename "$0") [-r|--read1 Read mate 1 file] [-R|--read2 Read mate 2 file] [-o|--output_dir
 exit 1
}

This is a function which will print out details on how we wish others to use our workflow

Just beneath the usage function, add the following code

Parse options
while [[$# -gt 0]]; do

 # Making named positional arguments
 case "$1" in
 -r|--read1)
 read1="$2"
 shift
 ;;
 -R|--read2)
 read2="$2"
 shift
 ;;
 -o|--output_dir)
 outdir="$2"
 shift
 ;;
 *)
 usage
 ;;
 esac
 shift
done

This will look through all user input and look whether there are any instances of -r , --read1 , -R , --read2 , -o , or
--outdir defined.

Everytime any of these is identified from the user input, the very next inpuit is used to define the value
corresponding to the argument.

Finally, we have to add a section that STOPS the script if none of the above arguments are provided, add the
following code:

How to bake a workflow 5

Check if required arguments are provided
if [[-z $read1 || -z $read2 || -z $outdir]]; then
 usage
fi

This looks whether the variables $read1 , $read2 , or $outdir was defined, if not the code calls the usage function
and then Shuts down

Execute the workflow to ensure that it actually works.

Part 7 workflow on entire directories
With everything up and running so far, it’s time to automate the workflow further. Currently, samples needs to be
specified one by one, one helpful enhancement would rather to point to an input directory, and then have the
workflow screen that directory for input files. This of course means that we would have to update the description,
but it would be worth the hassle.

Exercise 9

Add the following code just before the first bash call

read1_files=$(find $read_dir -maxdepth 1 -name *_R1.fastq.gz | sort)

for read1 in $read1_files; do

 # Determine read mate 2
 read2=${read1%_R1.fastq.gz}_R2.fastq.gz
 sample=$(basename $read1 _R1.fastq.gz)

This is a for-loop, it takes in a list of input → Here the paths for read1 files and then does your bash commands on
each items once. It must be ended with a done command.

Track down all -r/--read1 and -R/--read2 arguments in the usage function and the argument handler, and replace
these two arguments with a single -r/--read_dir argument

Finally, at the very bottom of the script input done as the final line, to denote the ending of the for loop

Your workflow file should look like this

read1_files=$(find $read_dir -maxdepth 1 -type f -name *_R1.*f*q* | sort)

for read1 in $read1_files; do

 # Determine read mate 2
 read2=${read1%_R1.fastq.gz}_R2.fastq.gz
 sample=$(basename $read1 _R1.fastq.gz)

 bash modules/moduleA.sh $read1 $read2 $outdir
 bash modules/moduleB.sh $read1 $read2 $outdir
 ...

done

Solution

#!/bin/bash

Define usage function
usage() {
 echo "Usage:"
 echo " $(basename "$0") [-r|--read_dir Raw read directory] [-o|--outdir Output directory]" >&2
 exit 1
}

How to bake a workflow 6

Parse options
while [[$# -gt 0]]; do

 # Making named positional arguments
 case "$1" in
 -r|--read_dir)
 read_dir="$2"
 shift
 ;;
 -o|--outdir)
 outdir="$2"
 shift
 ;;
 *)
 usage
 ;;
 esac
 shift
done

Check if required arguments are provided
if [[-z $read_dir || -z $outdir]]; then
 usage
fi

read1_files=$(find $read_dir -maxdepth 1 -type f -name *_R1.*f*q* | sort)

for read1 in $read1_files; do

 # Determine read mate 2 and sample name
 read2=${read1%_R1.fastq.gz}_R2.fastq.gz
 sample=$(basename $read1 _R1.fastq.gz)

 # Deducted
 trimmed1=$outdir/fastp/"$sample"_trim_R1.fastq.gz
 trimmed2=$outdir/fastp/"$sample"_trim_R2.fastq.gz

 echo Running FastQC
 bash modules/FastQC.sh $read1 $read2 $outdir

 echo Running fastp
 bash modules/fastp.sh $read1 $read2 $sample $outdir

 echo Running SPAdes
 bash modules/SPAdes.sh $trimmed1 $trimmed2 $sample $outdir

done

How to bake a workflow 7

