
⭕
Bacterial genome assembly - Intermediate

⛔ This exercise assumes the following:
 * A native Linux environment / terminal
 * A functional micromamba installation
 * Ability to install environments from
.yaml files
 * Reads of a few bacterial genomes
 * All files are stored within the home directory for the
gebt user. Feel free to change locations according to own needs!

Authors
These exercises where authored and tested by Povilas Matusevicius and Kasper Thystrup Karstensen

Introduction
The goal of this practical is to help building a pipeline for handling bacterial data from raw reads to sequence type
determination. The practical is build to hold you in the hand, while guiding you throughout the process.

⚠️ Therefore it is recommended to attempt the Intermediate exercise and only consult this exercise to guide
your progress through the intermediate exercises.

Prerequisites
For this exercise we will use the BTG_QC , BTG_spades_4.0.0 , BTG_alignment environments. In addition, we will use the
following files and file paths.

Path for read mate 1: /home/gebt/BTG/SequenceData/Ec016.illumina_R1.fastq.gz

Path for read mate 2: /home/gebt/BTG/SequenceData/Ec016.illumina_R2.fastq.gz

Path to Output folder: /home/gebt/BTG/Day8_pipelines/bacterial_asembly

Executing commands from different environments
A drawback of using conda/mamba environments, is that not all software can run in the same environment. When
running bash scripts, the shell doesn’t always know how to invoke the conda/mamba commands. With micromamba
though, there is a hack that can be utilized: Micromamba allow for cherry picking commands from different
environments using micromamba run . This way environments are not required to be loaded. So in order to run e.g.
MLST from within any (or no) environment, the following command can be used in the bash script.

micromamba run -n BTG_alignment mlst

Layout
Commands are highlighted with a special font and changing colors. It is generally assumed that brackets
[like_this_one], are contents which you must fill out with the correct information.

E.g. in echo [replace_me] , if the brackets are to be replaced with Hello_kitty , then the final product becomes echo

Hello_kitty .

Bacterial genome assembly - Intermediate 1

🎓 Important note: During the exercises, color coding of the bracket will be used to help you distinguish
input and output. Make sure to memorize the following:

[Main input] files in brackets are colored Green

[Other input] files in brackets are colored Orange

[Output] files in brackets are colored Red

Bacterial pipeline
In the exercise, your task is to write a script called “bacterial_assembly.sh” that will provide a QC report, trim raw
reads, generate an assembly for sample, and run mlst on “Ec016” it.

Setting up parameters
1. Navigate to the Day8_pipelines folder in BTG directory

2. Make a script file called bacterial_assembly.sh and open it.

💡 If you use nano to make the file, you don’t have to open it afterwards!

3. In the very beginning of the file, paste the following code chunk and fill out the missing information - read1
and read2 should be input into the script when calling the script (remember how positional arguments $1 $2
worked in previous exercise!):

#!/bin/bash

read1=""
read2=""
output_dir="/home/gebt/BTG/Day8_pipelines/bacterial_assembly"

Determine sample name from read filename
DONT CHANGE THESE:
read1_filename=$(basename $read1)
sample_name=${read1_filename%.illumina_R1*gz}

6. Add print statements to ensure that the script contains the correct information. add the following lines to the
end of the script. (They are to be removed again shortly).

echo "This is the read pair, consisting of $read1 and $read2"
echo "This is the sample name: $sample_name"
echo "This is the output folder: $output_dir"

5. Save and exit the file.

4. Add execution permission using: chmod u+x bacterial_assembly.sh

7. Execute the script by running ./bacterial_assembly.sh with read1 and read2 as inputs

9. Once it succeeds, reopen the file with nano and remove the echo statements.

10. Tools used in this exercise cannot make their own output folders, they can only use existing ones, while it is
for you to decide how your output should be structured, in this exercise structure will be provided in advanced
for the sake of clarity and simplicity, add these lines to create output folders for all the tools:

Generating output folders
fastqc_out=$output_dir/$sample_name/fastqc
fastp_out=$output_dir/$sample_name/fastp
spades_out=$output_dir/$sample_name/spades
mlst_out=$output_dir/$sample_name/mlst

Bacterial genome assembly - Intermediate 2

results_dir=$output_dir/Results

mkdir -p $fastqc_out
mkdir -p $fastp_out
mkdir -p $spades_out
mkdir -p $mlst_out
mkdir -p $results_dir

10. Try to follow structure created in here to store output of different upcoming steps. If you do, your code will
match partial and final solve provided in the exercise

QC and Read trimming
To ensure that we get a great overview of quality parameters we utilize FastQC and impose semi-strict filtration
criteria using fastp introduced during the Quality Assurance on Illumina Reads exercises.

💡 Use cd and ls to investigate outputs after every step.

1. Add the following lines of code to the script

micromamba run -n BTG_QC fastqc -o [output_folder] --memory 2048 --threads 6 --quiet [input_read1] [inpu
micromamba run -n BTG_QC fastp -i [input_read1] -o [output_folder]/"[sample_name]"_trimmed_R1.fastq.gz -

🚨 Warning these are long commands, meaning that you likely cannot see full command in one line, make
sure you copy full command and later replace all the [variables in brackets]

2. Execute the pipeline to ensure everything is working so far. If you forgot how to - check step7 in the segment
above.

🎓 Pro advice: There are many steps, and it is easy to make a typing errors (some of the commands are
very long!). So make your script one step at the time, and check that it works, before moving on to the
next step. This can most easily be achieved by having two terminal open simultaneously, both with the
loaded environment. One terminal handles the coding, while the other handles execution.

Remember, you can easily disable commands in your script simply by adding a comment symbol (#) at
the start of the line. Once you are ready to include the commands again, remove the comment symbol
again.

The script so far

#!/bin/bash

read1="$1"
read2="$2"
output_dir="/home/gebt/BTG/Day8_pipelines/bacterial_assembly"

Determine sample name from read filename
DONT CHANGE THESE:
read1_filename=$(basename $read1)
sample_name=${read1_filename%.illumina_R1*gz}

Generating output folders
fastqc_out=$output_dir/$sample_name/fastqc
fastp_out=$output_dir/$sample_name/fastp
spades_out=$output_dir/$sample_name/spades
mlst_out=$output_dir/$sample_name/mlst

Bacterial genome assembly - Intermediate 3

results_dir=$output_dir/Results

mkdir -p $fastqc_out
mkdir -p $fastp_out
mkdir -p $spades_out
mkdir -p $mlst_out
mkdir -p $results_dir

micromamba run -n BTG_QC fastqc -o $fastqc_out --memory 2048 --threads 6 --quiet $read1 $read2
micromamba run -n BTG_QC fastp -i $read1 -o $fastp_out/"$sample_name"_trimmed_R1.fastq.gz -I $read2 -O

Adding the assembler to the pipeline
After you trimmed low quality reads and determined that the general quality of reads will suffice, you need to
make an assembly. For this purpose you can use various assemblers, some of the popular ones are spades,
skesa, unicycler and many others. For this task we will be using spades, below is a command that runs
spades on our trimmed reads files:

Note that output of fastp - trimmed reads files, should be input for spades.

micromamba run -n BTG_spades_4.0.0 spades.py --isolate -1 [input_folder]/"[sample_name]"_trimmed_R1.fastq.g

Determine sequence type
One of the most useful result after you have assembled the sequence is to determine the type of it. In this task
we will be using mlst (multilocus sequence typing)

Note that output of spades - contigs.fasta, should be input for mlst.

micromamba run -n BTG_alignment mlst [input_folder]/contigs.fasta --quiet --label [sample_name] > [output_fold

Results
Lets collect all relevant information in a Results folder, so they are easily accessible from the Results directory

Generate summary of all relevant tools using MulitQC (Currently only FastQC works, MutliQC must be updated in
order to work with fastp)

Copy important results files to the Results directory

Generate a report on output and collect relevant files
micromamba run -n BTG_QC multiqc -o [final_result_dir] -qf $output_dir
cp $fastp_out/"$sample_name"_trimmed_*.fastq.gz [final_result_dir]/.
cp $spades_out/contigs.fasta [final_result_dir]/$sample_name.fasta
cp $mlst_out/$sample_name.tsv [final_result_dir]/.

Congratulations on your very own Bacterial assembly pipeline!

Solution
#!/bin/bash

read1="$1"
read2="$2"
output_dir="/home/gebt/BTG/Day8_pipelines/bacterial_assembly"

Determine sample name from read filename
DONT CHANGE THESE:
read1_filename=$(basename $read1)
sample_name=${read1_filename%.illumina_R1*gz}

Generating output folders

Bacterial genome assembly - Intermediate 4

fastqc_out=$output_dir/$sample_name/fastqc
fastp_out=$output_dir/$sample_name/fastp
spades_out=$output_dir/$sample_name/spades
mlst_out=$output_dir/$sample_name/mlst
results_dir=$output_dir/Results

mkdir -p $fastqc_out
mkdir -p $fastp_out
mkdir -p $spades_out
mkdir -p $mlst_out
mkdir -p $results_dir

micromamba run -n BTG_QC fastqc -o $fastqc_out --memory 2048 --threads 6 --quiet $read1 $read2
micromamba run -n BTG_QC fastp -i $read1 -o $fastp_out/"$sample_name"_trimmed_R1.fastq.gz -I $read2 -O
micromamba run -n BTG_spades_4.0.0 spades.py --isolate -1 $fastp_out/"$sample_name"_trimmed_R1.fastq.g
micromamba run -n BTG_alignment mlst $spades_out/contigs.fasta --quiet --label $sample_name > $mlst_ou

Generate a report on output and collect relevant files
micromamba run -n BTG_QC multiqc -o $results_dir -qf $output_dir
cp $fastp_out/"$sample_name"_trimmed_*.fastq.gz $results_dir/.
cp $spades_out/contigs.fasta $results_dir/$sample_name.fasta
cp $mlst_out/$sample_name.tsv $results_dir/.

Run the pipeline with different sample
Try to run whole pipeline on different sample: Ec004. You just need to call function with different input:

./bacterial_assembly.sh "/home/gebt/BTG/SequenceData/Ec004.illumina_R1.fastq.gz" "/home/gebt/BTG/Sequenc

Run the pipeline with one other samples from /home/gebt/BTG/SequenceData/

Bacterial genome assembly - Intermediate 5

