

Quality assessment Raw read QC

Last updated 2024-02-28

Objectives

- Understand the relation between read sizes and library preparation
- Overview of read count in relation to sequencing depth and error assessment
- Insights into overall read quality on the basis of base quality scoring
- Introduction to assessment of base contents.

A thing about reads...

Sample_R1.fastq

Sample R2.fastq

Read types

AdptA-ACGGTCA.....CGTCCGA-AdptB

• • •

Scenarios

Illumina read prep

Sample prep

- gDNA extraction
- Pre normalization

Library preparation

- Tagmentation
- Index PCR
- Normalization and pool

Sequencing

Read size selection

INDEX PCR AND CLEANUP

Read sizes

Pop quiz!

What library size do you think is aimed for?

Read size must correlate with the library strategy

Read size must correlate with the library strategy

Read counts dictates the sequencing depth

Read counts dictates the sequencing depth

Pop quiz time, yet again!!!

Sequence	Count
ACCTGGCGCCACCGACTGGCATGAACATGGA	96
NNNN	57
ACCTTGGC	48

- ullet
- Adapter? Biological? Technical? ullet
- •

Overrepresented reads may indicate errors in library preparations or sequencing.

Overrepresented reads may indicate errors in library preparations or sequencing.

Cluster formation

Base quality

Base quality

Overall base quality

EZ quiz

What to do with the crappy bases and reads?

What to do with the crappy bases and reads?

Throw it out!!

Base- and read -quality can be applied to filter out low quality sequencing data.

Base- and read -quality can be applied to filter out low quality sequencing data.

. . .

. . .

...

Base	Count	Percentage
A	49	36.03
С	26	19.12
G	19	13.97
Т	42	30.88

GC contents

S. aureus: ~33.09% E. coli: X%

... Y%

• • •

Base contents can indicate species and might aid as an early indicator of issues.

Base contents can indicate species and might aid as an early indicator of issues.

Objectives

- Understand the relation between read sizes and library preparation
- Overview of read count in relation to sequencing depth and error assessment
- Insights into overall read quality on the basis of base quality scoring
- Introduction to assessment of base contents.

BONUS contents!!!

How do we handle all these params?

- Low quality reads
- Adaptor content
- Reads that are too small
- Remove poly-A-reads (library dependent)

Filtration

Trimmomatic

BBduk

fastp

...

Filtration

Trimmomatic

BBduk

You survived!

Congratz...

Acknowledgements

The creation of this training material was commissioned by ECDC to Statens Serum Institut with the direct involvement of Kasper Thystrup Karstensen The revision and update of this training material was commissioned by ECDC to Statens Serum Institut with the direct involvement of Kasper Thystrup Karstensen, Astrid Rasmussen, and Søren Hallstrøm