RRRRRRRRRRRRRR
IIIIIIIIIIIIII
OOOOOOOOO

\ SUSE AR e

Bridging the gaps in bioinformatics/Getting started in
bioinformatics

Why and how to document your code

e

Documentation can be done at multiple levels @ C

Top-level: What is this code for? What is the
underlying idea? (README/Wiki)

Middle level: How can | use it? (Usage info, installation
requirements, scope, options)

Deep level: How does the code work? What
is the purpose of each chunk? (Comment
lines and structure)

Why should you care about documentation? @

Transparency
e Colleagues using the code will be able to point out issues, if they understand what the code is doing

* Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you
are not aware of

Why should you care about documentation? @

Transparency
e Colleagues using the code will be able to point out issues, if they understand what the code is doing

* Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you
are not aware of

Collaboration
* Give your colleagues a chance to contribute and improve on the code

e Give your colleagues a chance to take over from you

Why should you care about documentation? @

Transparency
e Colleagues using the code will be able to point out issues, if they understand what the code is doing

* Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you
are not aware of

Collaboration
* Give your colleagues a chance to contribute and improve on the code

e Give your colleagues a chance to take over from you

Reproducility

* This is how we do science!

Why should you care about documentation? s

B
Transparency

* Colleagues using the code will be able to point out issues, if they understand what the code is doing

* Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you
are not aware of

Collaboration
* Give your colleagues a chance to contribute and improve on the code

e Give your colleagues a chance to take over from you

Reproducility

* This is how we do science!

Helping yourself out

e |tis surprisingly easy to forget the details of code you wrote a while ago..

README!

* Format of README file is not fixed.
Content depends on your project

e Start with overview, then go more
detailed further down.

 The worst README is the one that
doesn’t exist!

Update your README file continously while
you develop your code!

Usage information

Well-written code has integrated usage information.

 Something useful should happen if you execute the software without arguments (or with the -h or --
help flag).

Program: bcftools (Tools for variant calling and manipulating VCFs and BCFs)
License: GNU GPLv3+, due to use of the GNU Scientific Library
Version: 1.14 (using htslib 1.14)

Usage: bcftools [--version|--version-only] [-—help] <command> <argument>
Commands:

—— Indexing
index index VCF/BCF files

—— VCF/BCF manipulation

annotate annotate and edit VCF/BCF files
concat concatenate VCF/BCF files from the same set of samples
convert convert VCF/BCF files to different formats and back

1icanr intarcartinne nf \IPE/RCPE filoace

Script level documentation eCOC

Keep a clear and logical structure.
Name your variables properly

Use comments (#)

get_ambiguous_positions.py

W oo NOO UL WN = |

NNNNNNNNNRRRRBRRPBRR R R
0 NOUEWNRSOWOWOONOOOUDDWNRS

J
bl

#!/usr/bin/env python3
import sys

import os

from Bio import SeqIO
from Bio.Seq import Seq

#Usage: python length_fasta.py sequences.fasta ‘r—‘——‘——’
#List of characters, which will not be counted as ambiguous AF"——————'

non_amb = ["A" ,UCt, T, G, at, e, ngu "N, ", n_n]

#Print a header of output
print("Seq_id\tPosition\tAmb")
#Read in fasta-file, and loop over sequences (first "for loop")/
fasta_file = sys.argv[1]
for seq_record in SeqIO.parse(fasta_file, "fasta")i‘r——__,——"
#Get sequence id, sequence and sequence length
seq_id = seq_record. id
seq_str = str(seq_record.seq)

seq_length = len(seq_str) ‘r—_,—"”
#Loop over each character in the sequence, and check if it exists in the "non_amb" list. If not, print sequence-id, position, and character

position=1

for character in seq_str:

if character not in non_amb: /
print(seq_id, position, character, sep="\t")

position = position + 1 #remember to add 1 to the position variable, as you move through the sequence string. Also when the character is not ambiguous!

Code evolves @

You write a script, and all is well. But then:

e Thereisabug

* You need another usage option
 Oran additonal script

* Thereis a dependency that got updated

e Change in wetlab

You write a script, and all is well. But then:

* Turns out that last add-on was a really bad idea. Must be changed. Meanwhile, users should go back to
the original version. Did you save it somewhere?

=> You need version control software

Acknowledgements

The creation of this training material was commissioned by ECDC to Statens Serum Institut
(SS1) with the direct involvement of Kirsten Ellegaard

11

