

 1

Python Handout

Table of Contents

Introduction ... 2

Environments ...2

Running Python from the command line ..2

Spyder ..3

Simple concepts .. 4

Variables ..4

Print ...4

Commenting ...5

Data types ... 5

Boolean ..6

Lists ...7
Indexing.. 7
Slicing .. 8

If statements ... 8

Elif and Else statements ..9

For loops.. 10

Counting ... 11

File handling in Python ... 11

Biopython .. 12

System arguments ... 12

While loop ... 13

Functions .. 14

Sets ... 15

Dictionaries ... 15

 2

Introduction
Welcome to the Python handout! This guide covers the essentials of Python scripting. Known
for its simplicity and readability, Python is a powerful language used in web development, data
analysis, and automation. With its rich libraries and strong community support, it’s great for
both beginners and experts. Let’s dive into key topics to help you master Python!

Environments
Environments help keep projects organized by using specific versions of programs and
packages, ensuring consistent behavior across different machines. Conda is a package and
environment management system that allows you to install and switch between different
library versions to avoid conflicts.

Setting up a Conda environment is easy! We’ve already created one for you, so you don’t have
to worry about it. But if you’re curious, you can see how it is done below —just so you can see
how simple it really is.

To activate the environment:

To deactivate the environment when finished:

To create an environment named ‘MyEnv’ with Python version 3.6 through the terminal:

Running Python from the command line
Running a Python script through the command line is like running a bash script. You can add
a shebang line in the first line of the script so the interpreter knows how to read it:

And run it through the terminal like so:

Or you can run it using the Python command:

Note: Python scripts have the extension ‘.py’.

In this module, we’ll use Spyder, an Integrated Development Environment (IDE), to run Python
scripts directly without a command line or shebangs.

$ conda activate MyEnv Unix

$ conda deactivate MyEnv Unix

#!/usr/bin/env python3 Python

<code>

$ python myfirst.py Unix

$./myfirst.py Unix

$ conda create -n MyEnv python=3.6 Unix

 3

Spyder
The Spyder interface has three main panes:

• Pane 1: The Editor pane provides a robust code editing environment with features like
syntax highlighting.

• Pane 2: The Variable Explorer pane displays assigned variables, showing their values,
types, and dimensions.

• Pane 3: The IPython Console is used for running Python code interactively, viewing
output, and accessing debugging tools.

The toolbar in the Spyder interface also has three handy buttons we would like to highlight:

• Button 1: The New File button creates a new script or file.

• Button 2: The Run button executes the current script, allowing you to run your code
and observe the output.

• Button 3: This Run button executes the current selection, allowing you to run chunks
of your code and observe the output.

1

2

3

1 2 3

 4

Simple concepts
Variables
Variables store data and can hold different types, such as numbers, strings, or lists. They
allow you to perform calculations, store user input, and manage information dynamically,
making your Python programs more flexible and functional.

 In Python, you assign variables using =, just like in Bash:

Note: when assigning strings to variables, you can use single or double quotes; it will
ultimately have the same result.
Note: Variables are case-sensitive, so the variable varA differs from VarA. If you assign a new
value to an existing variable, it will be overwritten.

Variables must be defined in the script before being used in a command. If the script
hasn’t been executed, assigned variables won’t appear in the Variable Explorer (Pane 2),
where all defined variables are displayed.

Print
The print() statement in Python displays output in the console. You can use it to display
text, variables, or expressions, making it a valuable tool for understanding your program’s
execution.

Printing in Python is simple:

Note: by default, separating the input of a print statement with a comma will add space
between each input, whereas + will not.

print("This is a printout") python
output: This is a printout

excuse = "My boyfriend ate my dog, so, I couldn’t join the meeting."
print(excuse)
output: My boyfriend ate my dog, so, I couldn’t join the meeting.

A = "Vodka"
B = "Cake"
print("Is",A,"and",B,"good for you?")
output: Is Vodka and Cake good for you?

print("Is"+A+"and"+B+"good for you?")
output: IsVodkaandCakegood for you?

VarA = "The variable VarA now contains a string" python
VarB = 300

 5

Commenting
To add a comment in Python, use #, just like in Bash:

You can also comment out multiple lines of code. This is especially useful for code chunks you
do not need to run now. To start and end a multi-line comment, use """ (triple quotes).

Data types
Python has several built-in data types that are fundamental for storing and manipulating
different kinds of data. Some common data types in Python include:

1. Integers (int): Whole numbers without decimal points.
2. Floating-Point Numbers (float): Numbers with decimal points.
3. Strings (str): Sequences of characters, such as text or words, enclosed in quotes.
4. Booleans (bool): True or False values.
5. Lists: Ordered, modifiable collections of items of any data type.
6. Sets: Unordered collections of unique elements.
7. Dictionaries: Key-value pairs for fast data lookup and retrieval.

The type() function is used to determine the type of an object. Here are some examples:

This is a comment that will not run python
This is not a comment and will cause syntax error
you can write anything you want here; it is not executable

output: SyntaxError: invalid syntax

""" python
This code is ignored
print("This statement isn’t going to happen")
"""
print("This will be printed, and is not commented out")
output: This is not commented out and will be printed, and

type(3) output: int python
type(3.0) output: float
type("True") output: str
type(True) output: bool
type([1, "hello", 3.5]) output: list
type({1, "world", 3.5}) output: set
type({"a": 1, "b": 2}) output: dict

 6

Python provides several functions to convert one data type to another, such as int(), float(),
str(), list(), dict(), and bool(). Here are some examples:

Boolean
A Boolean is a data type with two values: True and False. Comparison operators check the
relationship between values and return a Boolean result. Here are the comparison operators
in Python:

Meaning Operator
Equal ==
Not equal !=
Greater than >
Less than <
Greater than or equal to >=
Less than or equal to <=

Logical operators are used to perform logical operations on Boolean values. These
operators allow you to combine Boolean values and expressions to evaluate complex
conditions. The three main comparison operators include:

• and: Returns True if both operands are True.
• or: Returns True if at least one of the operands is True.
• not: Negates a Boolean value, meaning it flips True to False and False to True.

 Here are some examples:

Convert to str python
str(3) output: "3"

Convert to float
float(3) output: 3.0

Convert to int
int(3.0) output: 3

Boolean Expression and Output python
(1 > 2) # output: False
(1 == 2) # output: False
(1 < 2) # output: True

Logical Operators:
(1 == 2 and 1 < 2) # output: False
(1 == 2 or 1 < 2) # output: True
(not(1 > 2)) # output: True

 7

Lists
 A list is a flexible way to store multiple items. You create one using square brackets [],
separating items with commas. Lists can hold different types of data, like numbers, strings, or
even other lists. Assign a list using = just like variables, but avoid naming it "list.". Here are
some examples:

Python includes built-in methods to perform various operations on lists, such as .len(),
.append(), .insert(), .remove(), .sort(), .reverse(), and more. Here are a few examples:

Indexing
In Python, elements in a list are accessed using zero-based indexing, meaning the first item is
at index 0, the second at 1, and so on. Use square brackets [] with the index number to get a
specific value. Here are some examples:

Lists are mutable, meaning you can change the value of individual elements by assigning
new values to specific indices:

Create list containing four strings python
activities = ["hiking", "biking", "drinking", "murdering"]

Create list containing multiple element types
mixed = [1, 1.0, ["list", "inside", "list"], True]

Create list python
activities = ["hiking", "biking", "drinking", "baking"]

access elements in list
activities[0] # Output: hiking
activities[2] # Output: drinking

change element in list python
activities[3] = "knitting"
print(activities)
output: ["hiking", "biking", "drinking", "knitting"]

Append element to list python
activities.append("baking")
print(activities)
output: ["hiking", "biking", "drinking", "murdering", "baking"]

Remove element from list
activities.remove("murdering")
print(activities)
output: ["hiking", "biking", "drinking", "baking"]

Find length of list
len(activities)
output: 4

 8

Slicing
Slicing extracts a portion of a list, string, or sequence, creating a new subset. In the table
below, the start index defines where the slice begins, and the stop index defines where it
ends (excluding the stop index itself):

Slicing command Effect
Object[start:stop] Items from start to stop
Object[start:] Everything from the start
Object[:stop] Everything from beginning to stop
Object[:] Everything
Object[-2:] Last two items in the object
Object[:-2] Everything besides the last two items

Here are some examples:

Remember that python uses zero-based indexing.

If statements
If statements allow conditional execution, meaning code runs only if a specific condition
is met. A basic if statement looks like this:

• <statement1> and <statement2> run only if <expression> is True.

• <statement3> runs regardless, as it is not indented under the if block.

• The colon (:) after <expression> marks the start of the if statement.

• Unlike Bash, Python does not use an explicit end marker; the if-block ends when
indentation returns to the previous level.

if <expression> is TRUE: run <statement1> & <statement2> python
if <expression>:

<statement1>
<statement2>

<statement3>

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Extract a slice from index 2 to 5
my_list[2:5] # output: [3, 4, 5]

Extract a slice from index 3 to the end
my_list[3:] # output: [4, 5, 6, 7, 8, 9, 10]

Extract a slice from the beginning to index 6
my_list[:6] # output: [1, 2, 3, 4, 5, 6]

 9

Here is an example:

Note: the last print statement is printed regardless of the value of x.

Elif and Else statements
You can add more than two outcomes using elif (else if) and else statements:

• if runs when its condition is True.
• elif checks another condition if the if condition was False.
• else runs only if all previous conditions were False.

Here is a generel example:

• <expression1> is evaluated first. If True, <statement1> runs.

• If False, <expression2> is checked. If True, <statement2> runs.

• If both are False, <statement3> in the else-block runs.

• <statement4> runs regardless of the conditions above.

Key points:

• Order matters—conditions should be structured logically for accurate results.

• Use appropriate comparison operators to avoid unexpected behavior.

Below are examples and common pitfalls to watch out for:

if <expression1>: python
<statement1>

elif <expression2>:
<statement2>

else:
<statement3>

<statement4>

Start of if statement python
if x > 69:

print("I guess", x, "is bigger than 69!")
print("Damm…", x, "that’s big!")
the indentation stops here and so does the if statement

print("Oh no, it’s the end of the example")

input: X = 80 output: I guess 80 is bigger than 69!
 Damn… 80 that’s big!
 Oh no, it’s the end of the example

input: X = 20 output: Oh no, it’s the end of the example

 10

1. CORRECT: X = 15 works correctly because 15 < 20 is True, so the i- block runs.
2. INCORRECT: Y = 5 satisfies Y < 20, so the elif Y < 10 condition is never checked.

Fix: Swap the order of elif X < 10 and if X < 20 to ensure smaller numbers are
categorized correctly.

3. INCORRECT: X = 20 triggers else, but the statement "20 is bigger than 20" is
incorrect.

Fix: Change the comparison to X <= 20 or adjust the final message.

For loops
For loops are used to iterate over a sequence of elements, such as a list, string, or range
of numbers, executing a block of code for each element in the sequence. The loop
iterates over each item one by one, allowing you to perform repetitive tasks or operations
on them. A simple for loop is shown below:

The loop goes through each <var> in <iterable> one by one. The indented statements inside
the loop run for every item. Here is an example:

Note: that you can call <var> whatever you like. It will always have the value of an item in the
loop.

Create list python
list_activities = ["hiking ", "murdering ", "drinking"]

Iterate through every item in list_activities
for activity in list_activities:
 print(activity,"is a wholesome activity")

output: hiking is a wholesome activity

murdering is a wholesome activity
drinking is a wholesome activity

for <var> in <iterable>: python
<statement(s)>

Initiate if statement python
if Y < 20:

print(Y, "is smaller than 20")
elif Y < 10:

print(Y, "is smaller than 10")
else:

print(Y, "is bigger than 20")

1) input: Y = 15 output: 15 is smaller than 20
2) input: Y = 5 output: 5 is smaller than 20
3) input: Y = 20 output: 20 is bigger than 20

 11

The break statement is used to exit or terminate a loop prematurely. Here is an example:

Note: the loop was terminated before iterating over last item.

Counting
You can use a counting variable inside a for-loop to track how many times the loop runs.

• Set counter = 0 before the loop.
• Use counter += 1 inside the loop to increase the count each time.
• You can also use counter -= 1 to decrease the count instead

File handling in Python
File handling in Python involves working with files to read or write data. To open a file,
you can use the open() function that takes two parameters: the file path and the mode.
The mode specifies whether you want to read, write, or append to the file:

To write data to a file, open the file in write mode ("w") or append mode ("a"), and then
use the .write() method to add content:

initiate counter python
counter = 0

Iterate through every item in list_activities
for stuff in list_activities:
 print("Should we go", stuff, "today? ")
 counter += 1 # add 1 for every iteration
print("We have", counter, "options of activities today")

output: should we go hiking today?
 Should we go murdering today?
 Should we go drinking today?
 We have 3 options of activities today

Iterate through every item in list_activities python
for activity in list_activities:
 if activity == "murdering":
 print("Mate… No")
 print("I… Gotta go")
 break
 else:
 print("Let’s go", activity)

output: Let’s go hiking
 Mate… No
 I… Gotta go

file = open("example.txt", "r") # read mode python
file = open("example.txt", "w") # write mode
file = open("example.txt", "a") # append mode

 12

Biopython
Biopython is the most widely used bioinformatics package for Python, offering multiple
sub-modules for common bioinformatics tasks. It provides a simple way to parse FASTA
files and extract sequence data using SeqIO.parse(). Here is an example:

Why use Biopython:

• Easily reads FASTA, GenBank, and other bioinformatics formats
• Provides built-in tools for sequence analysis, alignment, and annotations
• Simplifies computational biology workflows for researchers and scientists

System arguments
System arguments allow you to pass input values or parameters directly to a script from
the command line. These arguments are passed as strings and can be accessed within
your Python script. To use system arguments, import the sys module, which provides
access to system-specific parameters and functions. Consider this example – let’s call
the script example.py:

Executing the script in the command line will give the following output:

Loading required packages python
from Bio import SeqIO
from Bio.Seq import Seq

path to FASTA file
filename = "path/to/file/sequences.fasta"

Parsing the FASTA file
sequences = SeqIO.parse(filename, "fasta")

Iterating over the sequences
for seq in sequences:
 print("ID:", seq.id) # print sequence ID
 print("Sequence:", seq.seq) # print sequence
 print("Length:", len(seq)) # print sequence length

import sys python
Accessing command-line arguments
a = sys.argv[1]
b = sys.argv[2]
c = sys.argv[3]

Using the arguments
print("Argument 1:", a)
print("Argument 2:", b)
print("Argument 3:", c)

$ python example.py duck duck goose Unix

Argument 1: duck
Argument 2: duck
Argument 3: goose

file = open("example.txt", "w") # creates a new file or overwrites the existing
file.write("Overwriting the file!") # overwrites the file with the given content
file.close() # closes the file after writing

 13

While loop
A for loop runs a fixed number of times, but a while loop is used when you don’t know how
many iterations are needed. A while loop continues running as long as its condition remains
True. Here is a general example:

• Indentation is essential, just like in for-loops and if-statements.

• The loop runs until <expression> becomes False.

• The condition usually involves a variable that changes within the loop to eventually
stop it; if not, the while loop will continue at infinite.

• cake starts at 2.

• The loop runs as long as cake > 0.

• cake decreases by 1 each time.

• Once cake reaches 0, the condition becomes False, and the loop stops.

The built-in function len() returns the length of an object, such as the number of characters in
a string or elements in a list. This versatile function has many uses, including when you need
a maximum, either when finding a range for slicing or iterating through a list using a while-
loop. Here is an example:

Define number of cakes python
cakes = 2

Run if cake variable is bigger than zero
while cakes > 0
 cake -= 1 # subtract 1 for every iteration
 print("Kasper ate a cake")
print("Kasper ate all the cakes")

output: Kasper ate a cake
 Kasper ate a cake
 Kasper ate all the cakes

while <expression>: python
<statement(s)>

 14

Functions
Functions help organize and reuse code efficiently by performing specific tasks that can
be called multiple times. A function can take input arguments (optional) and return a
value (optional). Defining a function in Python:

• Use the def keyword.
• Provide a function name and parameters inside parentheses.
• The function body is indented.
• Call the function to execute it.

Functions can also return values using the return statement. Here's an example:

• The returned value is stored in VarA and can be used later.
• The function is reusable for any two numbers.

initiate counter python
i = 0

Create list
list_activities = ["hiking ", "murdering ", "drinking "]

Run if counter is smaller than list_activities
while i < len(list_activities):
 print(list_activities[i])
 i += 1 # add 1 for every iteration

output: hiking
 murdering
 drinking

Creating a function called greet that takes a name parameter python
def greet(name):
 print("Hello, " + name + "!")

Executing function
greet("Kasper") # output: Hello, Kasper!
greet("neighbor") # output: Hello, neighbor!
greet("7") # output: Hello, 7!

Creating a function that return values using the return statement
def add_numbers(a, b):
 return a + b

Capture the returned value by assign a variable
VarA = add_numbers(1,2)
Print(VarA)
output: 3

 15

Sets
A set is a mutable, unordered collection of unique elements in Python. It is defined using
curly braces {} and can hold different data types, such as numbers and strings. Key
features of sets:

• No duplicates: If an element is added multiple times, it appears only once.
• Unordered: Elements have no fixed position, so indexing is not possible.
• Mutable: You can add or remove elements after creation.

Dictionaries
A dictionary in Python is a powerful and flexible data structure that stores data as key-
value pairs {key: value}. Unlike lists, where elements are accessed by index, dictionaries
allow fast lookups using unique keys, making data retrieval more efficient.

Dictionaries are useful for:
• Perfect for structured data like user profiles, config-urations, and settings.
• Retrieving a value using a key is much faster than searching through a list.
• Can hold multiple data types, including lists, tuples, sets, or even other

dictionaries (nested dictionaries).
• You can easily add or modify key-value pairs at runtime.

Creating a dictionary of lists python
activities = {"yes": ["hike"], "no": ["murder"]}

Adding a new value to the list of values
activities["yes"].append("sing")
print(activities["yes"]) # output: ['hike', 'sing']

Adding a new key and value (value not a list, appending not possible)
activities["maybe"] = "sleep"
print(activities)
output: {'yes': ['hike','sing'], 'no': ['murder'], 'maybe' : 'sleep'}

Accessing a specific value from the list of values
first_activity = activities["yes"][0]
print(first_activity) # output: 'hike'

Creating a set
my_set = {1, 2, 7, 3, 4, 2, 5, 4, 2, 1, 1}
print(my_set) # output {1, 2, 3, 4, 5, 7}

Adding elements to a set
my_set.add(6)
print(my_set) # output {1, 2, 3, 4, 5, 6, 7}

Removing elements from a set
my_set.remove(3)
print(my_set) # output {1, 2, 4, 5, 6, 7}

	Introduction
	Environments
	Running Python from the command line
	Spyder

	Simple concepts
	Variables
	Print
	Commenting

	Data types
	Boolean
	Lists
	Indexing
	Slicing

	If statements
	Elif and Else statements

	For loops
	Counting

	File handling in Python
	Biopython
	System arguments
	While loop
	Functions
	Sets
	Dictionaries

