
Handout: Bash

Table of Contents

Bash .. 1

Creating a bash script ...1

Non-executable comments ...1

Shebangs ..1

Printing .. 2

Running bash scripts ... 2

Permissions ..2

Variables ... 3

Positional arguments ..4

Word count .. 5

Relational operators .. 5

If statements ... 5

Elif and else statements ..6

For loops.. 7

Looping over files ..8

Looping over arrays ...8

 1

Welcome to GenEpi-BioTrain Training in Genomic Epidemiology and Public Health
Bioinformatics “Bridging the Gap” - Third edition (TB and AMR)! This course will equip you
with the basic skills needed to navigate Unix environments, automate tasks, and harness
its capabilities to advance your understanding and practice in bioinformatics. This
second segment will be introducing bash and focusing on its automation prospects.

Bash
Bash (Bourne Again Shell) is a command-line interpreter that extends Unix by using its
powerful commands for automation, data processing, and workflow management.
Widely used in bioinformatics, Bash enables researchers to manipulate files, construct
pipelines, and integrate Unix tools efficiently.

Creating a bash script
To initiate a simple script, launch any text editor, such as nano or vim. For the purpose of
these exercises, we will opt for nano. Here is an example of how to create and open a
script called scriptname.sh:

This action creates and/or opens a text document, allowing you to write content similarly
to any other document. The ".sh" extension denotes that the file contains a script written
in the Bash programming language.

In the very bottom of the nano text editor, you will see a section of key options, including
saving changes (Ctrl + O), exiting (Ctrl + X), etc. To perform one of these options, press
Ctrl and the letter associated with the option. You can save the script when exiting.

Non-executable comments
Comments are essential for script documentation. They start with a hashtag (#) and are
non-executable. Everything after # will be a comment:

Shebangs
The shebang (#!/bin/bash) at the beginning of a script informs the system to use Bash as
the interpreter. This is crucial for script execution. Here is an example:

nano scriptname.sh Unix

This entire line is a comment and cannot be executed Bash

#!/bin/bash Bash

 2

Printing
Use the echo command to print messages to the terminal. Here is an example:

This script will print Hello World to the terminal three times. It is worth noting that the
sentence can be enclosed using single quotes ('), double quotes ("), and even without
using quotes. Nevertheless, using quotations is advisable.

Running bash scripts
To run a bash script, you simply add bash in front of the script name in the terminal. Here
is an example:

To make the script executable, run the following command in the terminal (further
elaborated in the permission section):

Now, to run it, you simply type ./ in front of the script in the terminal, assuming you are in
the same directory as the script:

If the script is not located in your current directory, you can specify the path:

Permissions
File permissions determine who can read, write, and execute a file. Here is a brief
overview:

• Read (r): Users with read permission can view the contents of the file and list
directory contents if the file is a directory.

• Write (w): Users with write permission can modify the file's contents, delete it, or
rename it. For directories, write permission allows users to create, delete, and
rename files within the directory.

• Execute (x): Users with execute permission can execute the file as a program or
script. For directories, execute permission allows users to access the directory's
contents and navigate through it.

#!/bin/bash Bash

echo Hello World

echo 'Hello World'

echo "Hello World"

bash scriptname.sh Unix

chmod 755 scriptname.sh Unix

./scriptname.sh Unix

./path/to/scriptname.sh Unix

 3

File permissions are typically represented by three sets of three characters:

• The first set indicates permissions for the file owner.
• The second set indicates permissions for the group that the file belongs to.
• The third set indicates permissions for other users not in the file's group.

For example, the permission string rwxrw-r-- means:

• The file owner has read, write, and execution permission.
• The group has read and write permission.
• Other users have read permission.

File permissions can be viewed and modified using the ls -l command to display
permissions and the chmod command to change them. Here is a list of mode parameters
used for modifying file permissions:

Permission
0 None
1 Execute only
2 Write only
3 Write and execute
4 Read only
5 Read and execute
6 Read and write
7 Read, write, and execute

To modify permissions, use the chmod command along with the modes from the table
above. For example, in order to change permissions of a file so it matches the example
above (rwxrw-r--), you can write the following in the terminal:

Variables
Variables are used to store data such as numbers, strings, directories, and arrays. These
can be used for later reference or manipulation within a bash script. They are flexible and
can be assigned, reassigned, and used in various contexts. You must assign the variable
before using it; otherwise, the interpreter does not know what to do with the variable.
Some key points about variables in Bash:

• Declaration: Variables are declared by assigning a value to them, without
specifying a data type.

• Naming Convention: Variable names are case-sensitive and can consist of
letters, numbers, and underscores but cannot start with a number.

• Accessing Variables: To access the value stored in a variable, prepend the
variable name with a dollar sign ($).

chmod 764 scriptname.sh Unix

 4

• Assigning Values: Values are assigned to variables using the operator (=). No
spaces are allowed around the operator when assigning values.

• Quoting: It is good practice to quote variables containing white space.

Here is an example of a bash script with assigned variables:

The output when running the script above:

Notice
how the
variable
blue is
absent

from the output.

Positional arguments
Positional arguments refer to the parameters passed to a script when it is executed.
These arguments are accessible within the script using special variables known as
positional parameters. These are represented by: $1, $2, $3, ..., where $1 represents the
first argument, $2 the second, and so on. For example, the following bash script:

Would have the following output:

#!/bin/bash Bash

pet="polar bear"

edu=astrophysicist

wish=baker

col=blue

echo "Mia wants another $pet"

echo "Mia studied to be an $edu but really wanted to be a $wish"

#!/bin/bash Bash

echo "I love $1, but only on $2"
echo "All arguments passed: $@"

./scriptname.sh vegemite Tuesdays Unix
output: I love vegemite, but only on Tuesdays

All arguments passed: vegemite Tuesdays

./scriptname.sh Unix

output: Mia wants another polar bear

Mia studied to be an astrophysicist but really wanted to be a baker

 5

Word count
In Unix, wc stands for "word count". It is a command-line utility used to count the number
of lines, words, and characters in a file or standard input stream. When used without any
options or arguments, wc counts the number of lines, words, and characters in the
specified file(s). For example, to count the number of lines, words, and characters in the
script created above (scriptname.sh), you can use the command:

Relational operators
Relational operators are used to compare values or expressions and determine their
relationship. These operators help in making decisions within scripts based on the
comparison results. Here is a list of relational operators:

Operator Explanation
-eq is equal to
-ne is not equal to
-gt is greater than
-ge is greater than or equal to

-lt is less than
-le is less than or equal to

If statements
An if statement in Bash allows commands to run only when a specific condition is true.
It evaluates a condition and, if met, executes the corresponding commands. If the
condition is false, the commands are skipped. Here is a brief explanation of how it works:

• Syntax: The basic syntax of an if statement in Bash is as follows:

• Condition: The <condition> is an expression that determines whether a statement
is true or false. It is typically enclosed within square brackets [].

• Commands: The commands to execute (<statement>) if the condition evaluates
to true are placed between the then keyword and the fi keyword. These
commands can be simple or complex, including multiple lines of code.

if [<condition>]; then bash
commands to execute if the condition is true
<statement>

fi

wc scriptname.sh Bash

output 4 15 100 scriptname.sh

wc -l scriptname.sh

output 4 scriptname.sh

 6

Here is an example:

Note: tab is used to set the indentation before the <statement(s)>
Note: space is used to add whitespace after the if statement as well as between the
brackets and the <condition>

The output when executing the script above:

Note: Running the script with an input of 20 produces only two outputs. This happens
because the if condition (20 < 12) is false, so the print command inside the if block does
not execute.

Elif and else statements
 You can extend an if statement using elif (short for "else if") and else to handle multiple
conditions and define a fallback action if none are met. Unlike if, you can include multiple
elif statements in sequence, but only one else. The basic syntax is:

#!/bin/bash Bash
if [2 -lt 4]; then
 echo "2 is indeed less than 4"
fi

if [$1 -lt 12]; then
 echo "We have less than 12 days until summer! "
fi

cake=1
if [$cake -eq 1]; then
 echo "there is only one cake left :("
fi

if [<condition1>]; then Bash
 # commands to execute if condition1 is true

<statement1>
elif [<condition2>]; then
 # commands to execute if condition1 is false and condition2 is true
 <statement2>
else
 # commands to execute if none of the conditions are true

 <statement3>
fi

./script.sh 11 Unix
output: 2 is indeed less than 4

We have less than 12 days until summer!
 There is only one cake left :(

./script.sh 20
output: 2 is indeed less than 4

There is only one cake left :(

 7

Here is an example:

The output when executing the script above:

For loops
A for loop is used to iterate over a list of items and perform a set of commands for each
item in the list. Here is a brief explanation of how for loops work:

• Syntax: The basic syntax of a for loop is as follows:

• iterable: The <iterable> is a collection of items separated by spaces (list). These
items can be strings, numbers, file names, or any other type of data.

• Item: The <item> is a variable that represents each element in the <iterable>
during each iteration of the loop. You can use this variable to reference the current
item being processed.

• Statement: The <statement(s)> to execute for each item in the iterable are placed
between the do and done keywords. These commands can be simple or complex,
including multiple lines of code.

#!/bin/bash Bash

if ["$1" -gt "$2"]; then
 echo "$1 is greater than $2"
elif ["$1" -lt "$2"]; then
 echo "$1 is less than $2"
else
 echo "$1 is equal to $2"
fi

./script.sh 5 3 Unix
output: 5 is greater than 3

./script.sh 3 5
output: 3 is less than 5

./script.sh 5 5
output: 5 is equal to 5

#!/bin/bash bash

for <item> in <iterable>; do

commands to execute for each <item>
<statement>

done

 8

Here is an example:

The output when executing the script above:

Note: It does not matter what you call the variable <item>. The result would be the same
if you called it cat instead of fruit, as long as you changed the name inside the for-loop as
well. Here is another example that would result in the same output:

Looping over files
Looping over files in Bash involves iterating through a list of files or directories and
performing actions on each. You can use wildcards like * to match multiple files or
specify patterns (e.g., *.txt for text files) to filter specific types. This allows you to
automate tasks such as renaming, moving, or processing multiple files efficiently:

Looping over arrays
An array is a data structure that stores multiple values under a single variable name. In
Bash, arrays are defined using parentheses () and accessed using their index number. You
can iterate over all elements of an array using a for loop. For example:

#!/bin/bash Bash

Declare array
cutePetArray=("bear" "hippo" "snake" "werewolf")

for cutiepie in ${cutePetArray[@]}; do
 echo "The $cutiepie is a cutiepie! "
done

#!/bin/bash bash

for animal in bear hippo snake werewolf; do
 echo "The $animal is a cutiepie!"
done

./script.sh Unix
output: I like apple
 I like banana
 I like orange

#!/bin/bash Bash

for file in /path/to/dir/*; do
 echo "Processing file: $file"
done

./script Unix
output: The bear is a cutiepie!
 The hippo is a cutiepie!
 The snake is a cutiepie!
 The werewolf is a cutiepie!

#!/bin/bash bash

for fruit in bear hippo snake werewolf; do
 echo "The $fruit is a cutiepie"
done

 9

Note: Using a for loop over an array is the same as usual, with an added ‘@’ to ensure it
loops over all things in the array, not just the first string.

Output when running the script above:

you can access individual elements of an array using their index number, with zero-
based indexing (i.e., the first element is at index 0, the second at 1, etc.):

Note: Curly braces {} are required when accessing an array element, or Bash will not
interpret it correctly.

Output when running the script above:

./script Unix
output: The bear is a cutiepie!
 The hippo is a cutiepie!
 The snake is a cutiepie!
 The werewolf is a cutiepie!

#!/bin/bash Bash

Declare array
cutePetArray=("bear" "hippo" "snake" "werewolf")

echo "The ${cutePetArray [2]} is a cutiepie!"
echo "The ${cutePetArray [0]} is a cutiepie!"

./script Unix
output: The snake is a cutiepie!
 The bear is a cutiepie!

	Bash
	Creating a bash script
	Non-executable comments
	Shebangs

	Printing
	Running bash scripts
	Permissions

	Variables
	Positional arguments

	Word count
	Relational operators
	If statements
	Elif and else statements

	For loops
	Looping over files
	Looping over arrays

