

 1

Handout: Introducing the command line

Table of Contents

Unix .. 2

Linux .. 2

Command line ... 2

Overview of Important Unix Commands ... 3

Chapter 1: Navigating The File System ... 4
Print working directory .. 4
Change directory .. 5
List Content .. 5
Get path ... 6

Chapter 2: Managing the File System ... 6
Create .. 6
Remove .. 7
Copy .. 7

Symbolic links .. 7
Move .. 8

Rename ... 8
Special Characters ... 8

Wildcard .. 8
Current Directory Reference ... 9

Chapter 3: Viewing and Editing Files .. 9
View ... 9
Edit .. 10

Chapter 4: Handling and Compressing Files .. 11
Redirect ... 11
Append .. 11
Compress and Decompress .. 11

Chapter 5: Advanced .. 12
Search ... 12
Word count .. 12
Pipe ... 12

 2

Welcome to GenEpi-BioTrain Training in Genomic Epidemiology and Public Health
Bioinformatics “Bridging the Gap” - Third edition (TB and AMR)! This course will equip you
with the basic skills needed to navigate Unix environments, automate tasks, and harness its
capabilities to advance your understanding and practice in bioinformatics. This initial
segment will be introducing Unix, focusing specifically on understanding the command-line.

Unix
Unix is a powerful operating system renowned for its stability, security, and versatility. In
bioinformatics, Unix provides essential tools and a powerful command-line interface for
analyzing biological data, managing computational resources, and running sophisticated
algorithms efficiently. Originally developed in the 1970s, Unix has become the foundation
for many modern operating systems, including Linux and macOS.

Linux
Linux is an open-source operating system based on Unix. Unlike Unix, which is often
commercial and closed-source, Linux is freely available and can be modified by
anyone. It supports a variety of distributions like Ubuntu and CentOS, making it ideal for
diverse computing needs. Widely used in bioinformatics, Linux provides essential tools for
managing large datasets and automating analyses.

Command line
The command-line, also known as the terminal or shell, is a simple, text-based interface
used to interact with a computer's operating system. Unlike graphical user interfaces
(GUIs) that rely on clickable visual elements, like icons, buttons, and menus, the
command-line requires users to type commands to perform tasks. This interface
provides powerful and flexible control over the system, allowing users to navigate the file
system, manipulate files and folders, install and manage software, and execute complex
scripts and programs. Key advantages of using the command-line include its speed,
automation capabilities through scripting, and greater control over system operations. It is
a fundamental tool for bioinformaticians. You type commands, press Enter, and the
computer will do what you ask. A typical command follows this structure:

Command [options] [arguments]

• Command: The action you want to perform
• Options: Optional flags or settings that modify the behavior of the command.

Options often start with a single - followed by a letter or two -- followed by a word.
• Arguments: The targets on which the command acts, such as files, folders, etc.

 3

Overview of Important Unix Commands
These commands will be further elaborated throughout this handout.

Navigating the file system

pwd print working directory pwd
cd chance directory

move closer to root
cd [directory_path]
cd ..

ls list content ls

Managing the File System

touch create new file touch [file_name]
mkdir make new directory mkdir [directory_name]
rm remove file rm [file_name]
rm -r remove (recursive) directory rm -r [directory name]
cp copy file cp [file_name] [destination]
cp -r copy (recursive) directory cp -r [directory_name] [destination]
ln -sr link file (symbolic, relative) ln -s [path_to_original] [path_to_link]
mv move file/directory mv [source] [destination]
mv rename mv [old_name] [new_name]

Viewing & Editing files

cat display content in terminal cat [file_name]
cat concatenate files cat [file1] [file2] > [new_file]
less display content on page less [file_name] (press q for quit)
head display first few lines head [file_name]
tail display last few lines tail [file_name]
nano text editor nano [file_name]

Handling & Compressing Files

> redirect output of one command to a file [command1] > [file_name]
>> append output of one command to a file [command1] >> [file_name]
tar -x decompress directory Tar -xf [file_name]
tar -zcvf compress directory tar -zcf [file_directory]

Advanced

grep search for text within file grep 'pattern' [file_name]
wc word count wc
| (pipe) redirect output of one command to another [command1] | [command2]
chmod change mode (permission) chmod [mode] [file_name]

 4

Chapter 1: Navigating The File System
Navigating the file system in Unix involves understanding and using a set of commands that
allow you to move through folders (henceforth referred to as directories), manage files,
and explore the structure of your system. Unlike graphical user interfaces (GUIs), which rely
on visual representations and mouse clicks, Unix uses a command-line interface (CLI)
where you type commands to interact with the file system.

The Unix file system is organized in a hierarchical, tree-like structure that starts at the root
directory. Understanding how to move through and interact with this structure will enable
you to manage files, install software, and configure the system. The root directory is the
topmost level of the file system hierarchy. It is represented by a single forward slash (/). Think
of it as the trunk of a tree, from which all other branches (directories and subdirectories)
grow. All files and directories on your Linux system originate from this root.

Let's say you have a Unix-based system, and your username is "alice". Here's an example of
the hierarchical structure of your file system:

The tilde (~) is a shortcut representing the home directory of the current user. For example,
if your username is "alice", ~ would represent /home/alice. This shortcut simplifies
navigation and file management within the terminal.

Print working directory
The pwd (print working directory) command in Unix is a simple yet essential tool used to
display the current directory you are working in. When you enter pwd in the command line,
it outputs the full path of the directory you are currently in, helping you keep track of your
location within the file system. This is particularly useful when navigating complex directory
structures, ensuring you always know where you are before performing file and directory
operations.

 5

Change directory
The cd (change directory) command is used to navigate between directories in the
command-line interface. It allows you to move to different directories within the file system.
It is similar to navigating folders in a graphical user interface (GUI). Instead of clicking on
folders, you type commands to move between directories. Let's delve into how it works,
focusing on the concepts of absolute and relative paths, which are essential for effective
navigation:

• Absolute Path: An absolute path specifies the complete directory path from the root
directory, similar to a full URL in a web browser. For example: the command cd
/home/user/documents/ navigate directly to the "documents" directory regardless
of the current location.

• Relative Path: A relative path specifies the path relative to the current directory. For
example: if you are currently in the "user" folder and you type cd documents/, you
will move into the "documents" folder inside "user". It is like double-clicking on the
"documents" folder when you are already in the "user" folder.

You can also navigate up to the parent directory using "..", similar to clicking the "back"
button in a GUI. For example, if you are in /home/user/documents and you type cd .. you
will move up to the "user" folder (/home/user). Typing cd ../downloads/ moves you up
one level to the "user" folder and down one level into the "downloads" folder inside the "user"
folder (/home/user/downloads). Typing cd ../.. moves you up two levels (/home).

The tab key is your friend when navigating the command-line. Pressing tab while typing
a path will auto-complete directory and file names if they are unique, saving time and
reducing errors. For example, if you type cd doc and press tab, it will complete to cd
documents if "documents" is the only directory starting with "doc". If tab completion
works, it's a good indication that you are in the right directory or typing the correct path,
providing a helpful sanity check. If tab doesn’t work right away, try pressing it again, as you
may have multiple completions to choose from.

List Content
Listing the contents of directories helps you understand and manage the files and
directories within your system. The primary command used for this purpose is ls.

• Basic Usage: Typing ls displays the names of files and directories in the current
directory. For examples: if your current working directory is /home/user/documents,
typing ls will display the content of "documents". Typing ls ../downloads/ will

 6

display the contents of home/user/downloads even if it is not your current working
directory. Here are some useful options for the ls command:

o Detailed Information: Use ls -l to get a long format listing, showing
detailed information such as owner, size, and modification date.

o Sorting by modification time: ls -lt combines the long list and sorts files
and directories by modification time.

o Human readable sizes: ls -lh combines the long format with human-
readable file sizes, converting bytes sizes into KB, GB, etc.

Get path
Readlink displays the absolute path of a file or directory, showing you the full path from the
root to the target. This is useful for confirming the exact location of a file in the filesystem.
For example: Typing readlink -f filename.txt will give the full path to filename.txt.

Chapter 2: Managing the File System
Managing the file system is crucial for maintaining an efficient and organized workspace in
Unix. A few basic operations form the foundation for organizing your workspace, backing up
important data, and keeping a clean and navigable directory structure. This chapter will
guide you through the essential commands and techniques for handling files and
directories, ensuring you can effectively manage your environment.

Create

• Creating Files: The touch command is commonly used to create empty files. For
example: if your current working directory is /home/user/documents, typing touch
file.txt will create an empty file called file.txt (/home/user/documents/file.txt).
Typing touch ../newfile.txt will create an empty file inside the directory "user"
(/home/user/newfile.txt).

• Creating Directories: The mkdir (make directory) command is used to create new
directories. For example: if your current working directory is /home/user/documents,
typing mkdir assemblies will create a directory called "assemblies" inside
"documents" (/home/user/documents/assemblies).

 7

Remove
It is important to handle these operations with care because, unlike graphical user
interfaces, there is no "undo" button in Unix. Once a file or directory is deleted, it is
typically gone for good. Here is how to safely and effectively remove files and directories:

• Removing Files: The rm (remove) command is used to delete files. For example: To
delete the file called newfile.txt inside /home/user you can simply type rm
newfile.txt if "user" is your current working directory.

• Removing Directories: The rm -rf (remove -recursively and forcefully) command
is used to delete directories and all of their contents recursively. This command is
powerful and should be used with caution, as it permanently removes the directory
and everything inside it. For example: typing rm -rf /home/user/ will delete "user"
and all files and directories inside it, i.e. "documents", "downloads", and their
subfolders.

Copy

• Copying Files: The cp (copy) command is used to copy files. For example: typing cp
newfile.txt /home/user/documents/ will copy newfile.txt from your current
directory to /home/user/documents. If you are in /home/user and type cp
/home/user/documents/newfile.txt /home/user/, it will copy newfile.txt into
/home/user.

• Copying Directories: Use the -r (recursive) option with cp to copy directories and
their contents, just as you would with individual files. For example: typing cp -r
/home/user/documents/ /home/user/backup/ copies the entire "documents"
directory to the "backup" directory.

Symbolic links

Symbolic links, also known as symlinks or soft links, are special types of files in Unix that act
as pointers or shortcuts to other files or directories. They take up no space compared to
copying files, since they point to the path of the target file or directory, rather than
duplicating the file's content. Symbolic links can be created using either absolute or relative
paths, depending on how you want the link to reference its target:

• Absolute path: An absolute symbolic link uses the full path from the root of the
filesystem to point to a target. You create it with the ln -s command. For
example: ln -s /home/user/documents/newfile.txt symlink.txt creates a
symlink named "symlink.txt" in your current directory that points to "newfile.txt". This

 8

type of link is reliable when the target's location is fixed, but it will break if the target
is moved or deleted.

• Relative path: A relative symbolic link points to a target using a path relative to the
location of the link itself. You create it with the ln -sr command. For example, ln
-sr ../documents/newfile.txt symlink.txt creates a symlink named
"symlink.txt" in your current directory that points to "newfile.txt" located one
directory above. Relative symlinks are useful when the symlink and target may move
together within the directory structure, but they can break if the relative path between
them changes.

It's crucial to include the -s option when creating a symbolic link; otherwise, you'll create
a hard link instead, which behaves differently and can have unintended consequences.

Move

• Moving: The mv (move) command is used to move both files and directories from
one location to another, similar to how you would copy them with the cp command.
For example: typing mv newfile.txt /home/user/documents/ will move
newfile.txt from your current directory to /home/user/documents. Likewise, typing
mv /home/user/downloads/ /home/user/documents/ will move the entire
"downloads" directory and its contents to the "documents" directory.

The mv (move) command does not require the -r (recursive) option to move
directories and their contents. Unlike cp, mv inherently moves entire directories and
their contents.

Rename: The mv command serves the dual purpose of moving and renaming files and
directories. Moving changes the directory path, while renaming changes the file or directory
name within the same path. Conceptually, both actions are forms of relocation.

• Basic usage: To change the name of oldname.txt to newname.txt use the command
mv oldname.txt newname.txt. By taking advantage of the dual purpose of the mv
command, you can move and rename a file with a single, simple command: mv
oldname.txt /home/user/newname.txt.

Special Characters
Wildcard: Wildcards allow you to perform operations on multiple files and directories with
similar names or patterns, making tasks like listing, copying, moving, and deleting files more
efficient.

 9

• Basic Usage: The * wildcard matches any number of characters in a file or directory
name. For example: typing ls *.txt lists all files with a .txt extension in the current
directory. Typing rm E_coli* removes all files starting with E_coli.

The table below highlights the affected columns (green) for each example row.

*.fasta E_coli.fasta E_coli.fasta.gz coli.fasta E_coli123.fasta E_coli.txt fasta.gz

E_coli* E_coli.fasta E_coli.fasta.gz coli.fasta E_coli123.fasta E_coli.txt fasta.gz

E_coli*.fasta E_coli.fasta E_coli.fasta.gz coli.fasta E_coli123.fasta E_coli.txt fasta.gz

Current Directory Reference: The dot (.) represents the current directory and can be used
to simplify commands. For example, when you want to move or copy files into the current
directory, using "." makes the command concise and clear.

The following commands will all move newfile.txt from /home/user/documents to
/home/user/downloads:

• If you are located in /home/user/documents:
o mv newfile.txt /home/user/downloads/
o mv /home/user/documents/newfile.txt ../downloads/
o mv newfile.txt ../downloads/

• if you are located in /home/user/downloads:
o mv ../newfile.txt /home/user/downloads/
o mv /home/user/documents/newfile.txt .
o mv ../newfile.txt .

• Regardless of current location:
o mv /home/user/documents/newfile.txt /home/user/downloads/

Chapter 3: Viewing and Editing Files
Effectively viewing and managing the contents of files is a fundamental skill for any user.
Unix provides a variety of powerful commands to you help you inspect and manipulate file
contents directly from the terminal:

View

• Display and Merge Files: The cat command is used to concatenate and display the
full contents of files directly in the terminal. For example: running cat newfile.txt
displays the entire content of newfile.txt in the terminal. One of its powerful features

 10

is the ability to combine the contents of multiple files into a single output. This is
particularly useful when you want to merge several files together into one. For
example: cat newfile1.txt newfile2.txt newfile3.txt > combined.txt will
redirect the output of "newfile[1-3].txt" into "combined.txt".

• Display File in Separate Screen: The less command is used to view the contents
of a file one screen at a time. It is especially useful for reading large files, as it allows
you to scroll though the file, both forwards and backwards, without loading the entire
file into memory. For example: running less newfile.txt will open a separate
screen with the file contents. You can find specific text within the file by typing /
followed by a search term. To exit the screen, enter "q" to quit.

• Display Beginning of Files: The head command displays the first few lines of a file
directly in the terminal, allowing you to quickly see the beginning of the file. For
example: head newfile.txt will display the first ten lines of newfile.txt by default.
The head command also has the option of specifying the number of lines displayed.
For example: head -n 20 newfile.txt will display the first 20 lines of newfile.txt

• Display End of Files: The tail command displays the last few lines of a file directly
in the terminal, allowing you to quickly see the end of the file. For example: tail
newfile.txt will display the last ten lines of newfile.txt by default. Similar to head,
the tail command also has the option of specifying the number of lines displayed.
For example: tail -n 5 newfile.txt will display the last five lines of newfile.txt

Edit
Unix provides various text editors, both command-line-based and graphical, to facilitate
editing directly within the terminal. Nano is one of the most user-friendly and accessible text
editors available. To open a file using nano, simply type nano in front of the file you wish to
edit; for example: nano newfile.txt.

In the very bottom of the nano text editor, you will see a section of key options, including
saving changes (Ctrl + O), exiting (Ctrl + X), etc. To perform one of these options, press Ctrl
and the letter associated with the option. You can save the script when exiting.

 11

Chapter 4: Handling and Compressing Files

Redirect
Redirection (>) is a method used to direct the output of a command to a file or another
command, rather than displaying it on the screen. This allows you to capture output, store
it, or pass it to another process for further use. For example: ls > filelist.txt will list all
files and directories in the current working directory and save the output to filelist.txt.

Append
Appending (>>) refers to adding data to the end of an existing file without overwriting its
current contents. This is useful when you want to accumulate data over time or when you
need to preserve existing information while adding new output. For example: ls
/home/user/project1/reads >> filelist.txt will list all files and directories from
/home/user/project1/reads and append the output to filelist.txt.

Compress and Decompress
tar (short for tape archive) is a command for creating and extracting archive files, which
bundle multiple files or directories into a single file.

• Use -c to create a new archive.
• Use -x to extract files from the archive.
• Use –z to compress the archive using gzip.
• Use -v to verbosely list the files being processed (shows progress in terminal).
• Use -f to specify the name of the archive file.
• Use -h to follow symbolic links and include the actual files they point to.

You can combine these options to perform tasks like this:

Decompress a tar.gz File: tar -xzvf archive.tar.gz will decompress archive.tar.gz
while displaying the files being processed in the terminal.

Compress Directory: tar -czvf archive.tar.gz home/user/document/reads will
create a compressed the directory "reads” into an archive called archive.tar.gz while
displaying the files being processed in the terminal.

Compress Directory with Symbolic Links included: tar -chzvf archive.tar.gz
home/user/document/reads will compress the directory "reads” into an archive called
archive.tar.gz while displaying the files being processed in the terminal. If there are any
symbolic links in "reads", tar will follow those links and include the actual files they point to
in the archive, rather than just archiving the symbolic links themselves.

 12

Chapter 5: Advanced

Search
grep is used for searching text or files for lines that match a specified pattern. It reads
input from files and prints lines that match the search pattern. For example:
grep "search_term" filename.txt will search for the term "search_term" in
"filename.txt" and print all lines containing that term. Here are some useful options:

• Case Insensitive Search: Use grep -i to ignore case distinctions.
• Search Recursively: Use grep -r to search directories and their subdirectories.
• Count Matches: Use grep -c to count the number of lines that match the pattern.
• Show Line Numbers: Use grep -n to display line numbers with matching lines.
• Contextual Search: use grep -A [number] to display lines after each matching line.
• Only Matching Part: Use grep -o to display only the matching part of each line.

For example: grep -in "Once upon a time" fairytales.txt performs a case-
insensitive search for the phrase "once upon a time" in the file "fairytales.txt", displaying
both the matching lines and their line numbers.

For example: grep "^Once upon a time" fairytales.txt searches "fairytales.txt" for
lines that begin with "Once upon a time" and displays those lines. The ^ character indicates
the start of a line, so grep will only match lines that start with "Once upon a time".

Word count
The wc (word count) command is used to count the number of lines, words, and characters
in a file or input. It's commonly used for quickly summarizing text data. Basic usage:

• Count lines: Use wc –l to count the number of lines in a file.
• Count Words: Use wc -w to count the number of words.
• Count Characters: Use wc -c to count the number of characters.

For example: wc -w filename.txt is used to count the number of words in filename.txt.
If you don’t specify an option, for example wc filename.txt, it will count the number of
lines, words, and characters in filename.txt.

Pipe
The pipe (|) allows you to connect the output of one command directly into the input of
another. For example: ls | grep "txt" will list all files in the current working directory and
then filters the list to show only those containing "txt" using grep. Another example: ls | wc
-l is used to count the number of files and directories in the current directory.

